Follow Us @soratemplates

Monday, October 26, 2015

Work, Power & Energy Class: IX Standard (CBSE & WBBSE Board)

October 26, 2015 0 Comments

Study Material, Work, Power, Energy, CBSE, WBBSE BoardIn our day-to-day life, we talk about the term work, power and energy. Out of these energy is most important concept, since all living things need energy to maintain their life. The concept of work is closely associated the with the concept of energy. When we walk or run, we use the energy that we get from the food we eat. The concept of power is also closely associated with that of work. In our daily life, any physical or mental activity is termed as work done. 


āĻĻৈāύāύ্āĻĻিāύ āϜীāĻŦāύে āφāĻŽāϰা āĻ•াāϰ্āϝ, āĻ•্āώāĻŽāϤা āĻ“ āĻļāĻ•্āϤি āĻāχ āĻ•āĻĨাāĻ—ুāϞো āĻŦিāĻ­িāύ্āύāĻ­াāĻŦে āĻŦ্āϝāĻŦāĻšাāϰ āĻ•āϰি। āĻĻৌ⧜াāύো, āĻšাঁāϟা, āϏাঁāϤাāϰāĻ•াāϟা, āĻĒ⧜া, āϞেāĻ–া, āĻ•োāύāĻ“ āĻŦāϏ্āϤুāĻ•ে āĻ›োঁ⧜া, āĻŽাāϟি āĻ•োāĻĒাāύো, āϏাāχāĻ•েāϞ āϚাāϞাāύো āĻāĻ—ুāϞি āϏāĻŦ āφāĻŽাāĻĻেāϰ āĻ•াāϜেāϰ āĻŽāϧ্āϝে āĻĒ⧜ে। āĻāχ āĻ•াāϜ āĻ•āϰাāϰ āϏাāĻĨে āĻļāĻ•্āϤিāϰ āĻāĻ•āϟা āϧাāϰāĻŖা āĻĒাāχ। āϝেāĻŽāύ, āφāĻŽāϰা āĻāĻ–āύ āĻ•াāϜ āĻ•āϰāĻ›ি āĻŦা āφāĻŽাāĻĻেāϰ āĻāχ āĻ•াāϜāϟিāϰ āϜāύ্āϝ āĻļāĻ•্āϤিāϰ āĻĒ্āϰ⧟োāϜāύ। āϏাāϧাāϰāĻŖāĻ­াāĻŦে āĻ•াāϜ āĻ•āϰা āĻŦāϞāϤে āĻ•িāĻ›ু āĻ•āϰা āĻŦোāĻা⧟  āĻāĻŦং āĻāχāϏāĻŦ āĻ•াāϜ āĻ•āϰাāϰ āϜāύ্āϝ āφāĻŽাāĻĻেāϰ āĻļāϰীāϰে āĻļāĻ•্āϤিāϰ āĻĒ্āϰ⧟োāϜāύ āϝা āφāĻŽāϰা āĻ–াāĻĻ্āϝেāϰ āĻŽাāϧ্āϝāĻŽে āĻ—্āϰāĻšāĻŖ āĻ•āϰে āĻĨাāĻ•ি। āφāĻŦাāϰ āύিāϰ্āϜীāĻŦ āĻŦāϏ্āϤুāϰ āĻ•্āώেāϤ্āϰেāĻ“ āϝেāĻŽāύ, āϰেāĻĄিāĻ“, āϟেāϞিāĻ­িāĻļāύ, āĻŦৈāĻĻ্āϝুāϤিāĻ• āĻŦাāϤি, āĻŽাāχāĻ•্āϰোāĻ“āĻ­েāύ, āĻŦৈāĻĻ্āϝুāϤিāĻ• āĻĒাāĻ–া, āĻ•āĻŽ্āĻĒিāĻ“āϟাāϰ āχāϤ্āϝাāĻĻি āϝāύ্āϤ্āϰāĻ“ āĻ•াāϜ āĻ•āϰāϤে āĻĒাāϰে। āĻāĻĻেāϰ āĻ•াāϜেāϰ āϜāύ্āϝ āĻŦৈāĻĻ্āϝুāϤিāĻ• āĻļāĻ•্āϤি āϏāϰāĻŦāϰাāĻš āĻ•āϰāϤে āĻšā§Ÿ। āĻāχ āĻ•াāϰ্āϝ āĻ“ āĻļāĻ•্āϤিāϰ āϏāĻ™্āĻ—ে āĻ•্āώāĻŽāϤাāϰāĻ“ āĻāĻ•āϟি āϏāĻŽ্āĻĒāϰ্āĻ• āĻ–ুঁāϜে āĻĒাāχ। āφāĻŽāϰা āϏাāϰাāĻĻিāύ āĻ•াāϜ āĻ•āϰাāϰ āĻĒāϰ āĻ•্āώāĻŽāϤা āĻšাāϰি⧟ে āĻĢেāϞি āϝে āĻ•াāϰāύে āφāĻŽাāĻĻেāϰ āĻļāϰীāϰে āĻ“ āĻŽāύে āĻ•্āϞাāύ্āϤি āĻ“ āĻ…āĻŦāϏাāĻĻ āφāϏে।

 -------------------- O --------------------

However in physics, the meaning of work is entirely different. Here we shall discuss details about these terms. āĻ•িāύ্āϤু āĻĒāĻĻাāϰ্āĻĨāĻŦিāϜ্āĻžাāύেāϰ āĻ­াāώা⧟ āĻāχ āĻ•াāϰ্āϝ, āĻ•্āώāĻŽāϤা āĻŦা āĻļāĻ•্āϤিāϰ āϧাāϰāĻŖা āĻāĻ•āϟু āĻ…āύ্āϝāϰāĻ•āĻŽ। 

Concept of Work: Work is said to be done by a force on a body if the force applied causes a displacement in the body or object. In other words the condition which must be satisfied for the work to done are (1) A force must act on the body (2) The body must be displaced from one position to another position.
āĻĒāĻĻাāϰ্āĻĨāĻŦিāϜ্āĻžাāύেāϰ āĻ­াāώা⧟ āĻ•াāϰ্āϝেāϰ āϧাāϰāĻŖা: āϝāĻ–āύ āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰা āĻšā§Ÿ āĻāĻŦং āĻ“āχ āĻŦāϞেāϰ āĻ•্āϰি⧟া⧟ āϝāĻĻি āĻŦāϏ্āϤুāϟি āĻ—āϤিāĻļীāϞ āĻšā§Ÿ āϤāĻ–āύ āĻ“āχ āĻŦāϏ্āϤুāϟিāϰ āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§Ÿ। āĻ…āϰ্āĻĨাā§Ž āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰāϞে āϝāĻĻি āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ āϘāϟে āϤāĻ–āύ āĻŦāϞা āĻšā§Ÿ āĻŦāϏ্āϤুāϟি āĻ•াāϰ্āϝ āĻ•āϰেāĻ›ে। āĻ•োāύāĻ“ āĻ­াāϰী āĻŦāϏ্āϤুāĻ•ে āĻ…āύেāĻ• āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰাāϰ āĻĒāϰāĻ“ āϝāĻĻি āϤাāĻ•ে āϏāϰাāύো āύা āϝা⧟, āϤাāĻšāϞে āĻĒ্āϰ⧟োāĻ—āĻ•āϰ্āϤা āϝāϤāχ āĻ•্āϞাāύ্āϤ āĻšā§Ÿে āϝাāĻ• āύা āĻ•েāύ āĻāĻ•্āώেāϤ্āϰে āĻĒāĻĻাāϰ্āĻĨāĻŦিāϜ্āĻžাāύেāϰ āĻ­াāώা⧟ āĻ•িāύ্āϤু āĻ•োāύāĻ“ āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§Ÿ āύা। 

Concept of Power:  The rate at which energy is transferred by an object is called the power or the rate of work is done by an object is called the power.
We may noticed that an old people find it difficult to climb a flight of stairs quyickly. But they can easily climb the same flight of stair slowly. In both cases they spend the same amount of their stored energy and do the same amount of work in climbing the stairs. But thr rate at which energy is spent or work is done is different in the two cases.
Let us take another example. You can keep your hands immersed in lukewarm water for hours. But you cannot keep them in boiling water even for a second. Total transfer of energy from water to your hands may be the same in both the cases. However, the rate at which energy is transferred is different in the two cases. As a result, they have very different effects. So, we see that the rate at which work is done or energy is transferred is an important quantity. Hence, this quantity is given a separate name - called Power.
āĻĒāĻĻাāϰ্āĻĨāĻŦিāϜ্āĻžাāύেāϰ āĻ­াāώা⧟ āĻ•্āώāĻŽāϤাāϰ āϧাāϰāĻŖা: āĻĒāĻĻাāϰ্āĻĨāĻŦিāϜ্āĻžাāύেāϰ āĻ­াāώা⧟ āĻ•্āώāĻŽāϤাāϰ āϧাāϰāĻŖা āĻāĻ•āϟু āĻ…āύ্āϝāϰāĻ•āĻŽ। āϝেāĻŽāύ, āĻāĻ•āχ āĻĒāϰিāĻŽাāύ āĻ•াāϜ āĻĻুāχāϜāύ āĻŦ্āϝāĻ•্āϤিāĻ•ে āĻ•āϰāϤে āĻĻেāĻ“ā§Ÿা āĻšāϞ। āĻāĻ•্āώেāϤ্āϰে āĻĻুāχāϜāύāχ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰে āĻ•াāϜāϟিāĻ•ে āϏāĻŽ্āĻĒাāĻĻāύ āĻ•āϰāϞ। āĻ•িāύ্āϤু āĻĻেāĻ–া āĻ—েāϞ āĻāĻ•āϜāύেāϰ āĻ“āχ āĻ•াāϜāϟি āϏāĻŽ্āĻĒূāϰ্āύ āĻ•āϰāϤে āĻ•āĻŽ āϏāĻŽā§Ÿ āϞাāĻ—āϞো āĻ…āύ্āϝāϜāύেāϰ āĻŦেāĻļি āϏāĻŽā§Ÿ āϞাāĻ—āϞো। āĻāĻ•্āώেāϤ্āϰে āĻŦিāϜ্āĻžাāύেāϰ āĻ­াāώা⧟ āϝে āĻ•āĻŽ āϏāĻŽā§Ÿে āĻ•াāϜāϟিāĻ•ে āϏāĻŽ্āĻĒাāĻĻāύ āĻ•āϰে āϤাāϰ āĻ•্āώāĻŽāϤা āĻŦেāĻļি āĻŦāϞে āϧāϰা āĻšā§Ÿ। āϝেāĻŽāύ, āĻāĻ•āϟি āχāϟāĻ•ে āĻāĻ•āϤāϞা āĻĨেāĻ•ে āϤিāύāϤāϞা⧟ āϤুāϞāϤে āĻāĻ•āϜāύেāϰ 3 āĻŽিāύিāϟ āϏāĻŽā§Ÿ āϞাāĻ—āϞো āĻāĻŦং āφāϰ āĻāĻ•āϜāύেāϰ 5 āĻŽিāύিāϟ āϏāĻŽā§Ÿ āϞাāĻ—āϞো। āϝাāϰ āϏāĻŽā§Ÿ āĻ•āĻŽ āϞাāĻ—āϞো āĻāĻ•্āώেāϤ্āϰে āϤাāϰ āĻ•্āώāĻŽāϤা āĻŦেāĻļি। āĻ…āϰ্āĻĨাā§Ž āĻ•াāϰ্āϝ āĻ•āϰাāϰ āĻšাāϰāĻ•ে āĻ•্āώāĻŽāϤা āĻŦāϞে। āĻŦা āĻāĻ•āĻ• āϏāĻŽā§Ÿে āĻ•োāύāĻ“ āĻŦ্āϝāĻ•্āϤি āĻŦা āĻ•োāύāĻ“ āϝāύ্āϤ্āϰ āϝে āĻĒāϰিāĻŽাāύ āĻ•াāϰ্āϝ āϏāĻŽ্āĻĒাāĻĻāύ āĻ•āϰে āϤাāĻ•ে āĻŦিāϜ্āĻžাāύেāϰ āĻ­াāώা⧟ āĻ•্āώāĻŽāϤা āĻŦāϞে।

Concept of Energy: Energy is defined as the capacity to do work and it is measured by the total quantity of work it can do. When a car runs, the engine of the car generates a force which displaces the car. In other words, work is done by the car. This work is done on the expense of fuel. Fuel provides the energy needed to run the car. So, if there is no source of energy, no work will be done.
āĻĒāĻĻাāϰ্āĻĨāĻŦিāϜ্āĻžাāύেāϰ āĻ­াāώা⧟ āĻļāĻ•্āϤিāϰ āϧাāϰāĻŖা: āĻ•োāύāĻ“ āĻŦ্āϝāĻ•্āϤি āĻŦা āĻ•োāύāĻ“ āϝāύ্āϤ্āϰ āĻ•ী āĻĒāϰিāĻŽাāύ āĻ•াāϰ্āϝ āĻ•āϰāϤে āĻĒাāϰে āϤা āύিāϰ্āĻ­āϰ āĻ•āϰে āϤাāϰ āĻŽāϧ্āϝে āĻĨাāĻ•া āĻļāĻ•্āϤিāϰ āωāĻĒāϰ। āĻ…āϰ্āĻĨাā§Ž āĻ•াāϰ্āϝ āĻ•āϰাāϰ āϝে āϏাāĻŽāϰ্āĻĨ্āϝ āϤাāχ āĻšāϞ āĻļāĻ•্āϤি। āϝাāϰ āĻŽāϧ্āϝে āĻļāĻ•্āϤি āφāĻ›ে āϏেāχ āĻ•াāϰ্āϝ āϏāĻŽ্āĻĒাāĻĻāύ āĻ•āϰāϤে āĻĒাāϰে। āϤাāχ āĻ•াāϰ্āϝ āĻ“ āĻļāĻ•্āϤি āϏāĻŽাāϰ্āĻĨāĻ• āĻāĻŦং āĻāϰা āĻāĻ•āχ āĻ­ৌāϤāϰাāĻļি।


WORK

Work is always done by a force. We often name the agent that has applied the force and we say that the agent has done the work. For example, when an apple falls from o tree, the force of attraction of the earth does work on the apple. Here we say that the earth has done work on the apple. In fact, work is done by the force of attraction that the earth has exerted on the apple.
Therefore, the condition to the work to be done are
(1) A force must act on the body and
(2) The body must be displaced from one position to another position.

Example:
(1) Work is done, when we hit a football. In this case, when we hit the football, force is applied on the football and the football travels a certain distance before landing the on the ground.

(2) Work is done when we lift a box through a height. In this case the applied force does work in lifting the box.

FACTORS ON WHICH WORK DONE DEPENDS:
Work done by a force depends upon the following factors
(1) The magnitude of the applied force. If a small force is applied on a body, less amount of work is done and vice-versa. Thus \(W \propto F\), where F is the magnitude of force applied.

(2) The distance travelled by the body in the direction of applied force. If a body travels large distance on the application of force, large amount of work is done and vice-versa. Thus \(W \propto s\), where s is the magnitude of displacement.

āĻĒāĻĻাāϰ্āĻĨāĻŦিāϜ্āĻžাāύেāϰ āĻ­াāώা⧟ āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦাāĻš্āϝিāĻ• āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰে āϏāĻŽ্āĻĒাāĻĻিāϤ āĻ•াāϰ্āϝ āĻĻুāϟি āĻŦিāώ⧟েāϰ āωāĻĒāϰ āύিāϰ্āĻ­āϰ āĻ•āϰāϤে āĻšā§Ÿ।
(1) āĻŦাāĻš্āϝিāĻ• āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻŽাāύ। āĻāχ āĻŦাāĻš্āϝিāĻ• āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻŽাāύ āϝāϤ āĻŦেāĻļি āĻšāĻŦে āϏāĻŽ্āĻĒাāĻĻিāϤ āĻ•াāϰ্āϝেāϰ āĻŽাāύāĻ“ āϤāϤ āĻŦেāĻļি āĻšāĻŦে। āĻ…āϰ্āĻĨাā§Ž āϞেāĻ–া āϝা⧟ \(W \propto F\)
(2) āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻĒ্āϰ⧟োāĻ—āĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ (Displacement)। āĻŦাāĻš্āϝিāĻ• āĻŦāϞেāϰ āĻ•্āϰি⧟া⧟ āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āĻāχ āϏāϰāĻŖেāϰ āĻŽাāύāĻ“ āϝāϤ āĻŦেāĻļি āĻšāĻŦে, āϏāĻŽ্āĻĒাāĻĻিāϤ āĻ•াāϰ্āϝāĻ“ āϤāϤ āĻŦেāĻļি āĻšāĻŦে। āĻ…āϰ্āĻĨাā§Ž \(W \propto d\)

DEFINITION OF WORK:
The work done by a force acting on an object is equal to the product of the force and the displacement of the object in the direction of the force.
or,
Work is said to be done by a force on a body if the force applied causes a displacement in the body or object.
āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰ⧟োāĻ—āĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ āϘāϟে, āϤাāĻšāϞে āĻ“āχ āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞ āĻ•াāϰ্āϝ āĻ•āϰেāĻ›ে āĻŦāϞে āϧāϰা āĻšā§Ÿ।

MEASUREMENT OF WORK:
The amount of work done by a force on a body is obtained by multiplying the magnitude of force and the displacement.
So, \(Work = Force \times displacement\)
or,  \(W = F.d\)
āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻŽাāύ āĻ“ āϏāϰāĻŖেāϰ āĻ—ুāύāĻĢāϞ āĻĻ্āĻŦাāϰা āĻāχ āĻ•ৃāϤāĻ•াāϰ্āϝ āĻĒāϰিāĻŽাāĻĒ āĻ•āϰা āĻšā§Ÿ। āĻ…āϰ্āĻĨাā§Ž āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞ P āĻāĻŦং āϏāϰāĻŖেāϰ āĻŽাāύ d āĻšāϞে āĻ•ৃāϤāĻ•াāϰ্āϝ = āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞ \( \times \) āϏāϰāĻŖ
āĻŦা, \(W = F.d\)

UNIT & DEFINITION OF WORK DONE: 

CGS Unit of Work Done: 
We know work done = force \( \times \) displacement in the direction of force
or, W = F \( \times \) d
In CGS system, unit of force and displacement are 'dyne' and 'cm'
So, In CGS system, unit of work done is: dyne \( \times \) cm, its called as 'erg'
Therefore 1 erg = 1 dyne \( \times \) 1 cm
Definition of 'erg': When a force of 1 dyne moves a body through a distance of 1 cm in its own direction, then the work done is known as 1 erg.

SI Unit of work done:  
We know work done = force \( \times \) displacement in the direction of force
or, W = F \( \times \) d
In SI system, unit of force and displacement are 'newton' and 'metre'
So, In SI system, unit of work done is: Newton \( \times \) metre, its called as Joule
Therefore 1 Joule = i Newton \( \times \) 1 metre
Definition of Joule: When a force of 1 Newton moves a body through a distance of 1 metre in its own direction, then the work done is known as 1 Joule. 

Relation Between Joule & erg:
1 Joule = 1 N \( \times \) 1 m
or, 1 Joule = \({10^5}\) dyne \( \times \) 100 cm
or, 1 Joule = \({10^7}\) dyne-cm
or, 1 Joule = \({10^7}\) erg

āĻ•ৃāϤāĻ•াāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻ•ে āĻĒাāχ,
\(W = Fd\cos \theta \)
āĻāĻ–āύ \(\theta  = 0^\circ \) āĻšāϞে āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞ āĻ“ āϏāϰāĻŖেāϰ āĻ…āĻ­িāĻŽুāĻ– āĻāĻ•āχ āĻĻিāĻ•ে āĻšā§Ÿ। āϏেāĻ•্āώেāϤ্āϰে \(W = Fd\), āĻ…āϰ্āĻĨাā§Ž
āĻ•ৃāϤāĻ•াāϰ্āϝ = āĻŦāϞ \( \times \) āĻŦāϞেāϰ āĻĒ্āϰ⧟োāĻ—āĻŦিāύ্āĻĻুāϰ āĻ…āĻ­িāĻŽুāĻ–ে āϏāϰāĻŖ
āĻāĻ–āύ CGS āĻĒāĻĻ্āϧāϤিāϤে āĻŦāϞ āĻ“ āϏāϰāĻŖেāϰ āĻāĻ•āĻ• āϝāĻĨাāĻ•্āϰāĻŽে 'āĻĄাāχāύ' āĻāĻŦং 'āϏেāύ্āϟিāĻŽিāϟাāϰ'
āϤাāχ CGS āĻĒāĻĻ্āϧāϤিāϤে āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻāĻ•āĻ•: āĻĄাāχāύ \( \times \) āϏেāĻŽি, āĻāĻ•ে āφāϰ্āĻ— āĻŦāϞে।
āĻŦা, 1 āφāϰ্āĻ— = 1 āĻĄাāχāύ \( \times \) 1 āϏেāĻŽি

āφāϰ্āĻ—েāϰ āϏংāϜ্āĻžা: āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ 1 āĻĄাāχāύ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰ⧟োāĻ—āĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ 1 āϏেāĻŽি āĻšā§Ÿ, āϤāĻ–āύ āĻ“āχ āĻĒāϰিāĻŽাāύ āĻ•ৃāϤāĻ•াāϰ্āϝāĻ•ে 1 āφāϰ্āĻ— āĻ•াāϰ্āϝ āĻŦāϞে। 

āφāĻŦাāϰ SI āĻĒāĻĻ্āϧāϤিāϤে 'āĻŦāϞ' āĻ“ 'āϏāϰāĻŖেāϰ' āĻāĻ•āĻ• āĻšāϞ 'āύিāωāϟāύ' āĻāĻŦং 'āĻŽিāϟাāϰ'
āϤাāχ SI āĻĒāĻĻ্āϧāϤিāϤে āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻāĻ•āĻ•: āύিāωāϟāύ \( \times \) āĻŽিāϟাāϰ, āĻāĻ•ে āϜুāϞ āĻŦāϞে।
āĻŦা, 1 āϜুুুুāϞ = 1 āύিāωāϟāύ \( \times \) 1 āĻŽিāϟাāϰ

āϜুāϞেāϰ āϏংāϜ্āĻžা: āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ 1 āύিāωāϟāύ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰ⧟োāĻ—āĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ 1 āĻŽিāϟাāϰ āĻšā§Ÿ, āϤāĻ–āύ āĻ“āχ āĻĒāϰিāĻŽাāύ āĻ•ৃāϤāĻ•াāϰ্āϝāĻ•ে 1 āϜুāϞ āĻ•াāϰ্āϝ āĻŦāϞে।

āϜুāϞ āĻ“ āφāϰ্āĻ—েāϰ āĻŽāϧ্āϝে āϏāĻŽ্āĻĒāϰ্āĻ•:
1 āϜুāϞ = 1 āύিāωāϟāύ \( \times \) 1 āĻŽিāϟাāϰ
āĻŦা, 1 āϜুāϞ = \({10^5}\) āĻĄাāχāύ \( \times \) 100 āϏেāĻŽি
āĻŦা, 1 āϜুāϞ = \({10^7}\) āĻĄাāχāύ-āϏেāĻŽি
āĻŦা, 1 āϜুāϞ = \({10^7}\) āφāϰ্āĻ—

CALCULATION OF WORK DONE BY A CONSTANT FORCE:
The direction of displacement of an object can have different relation with the direction of the force acting on it. Their direction may be the same, opposite, perpendicular to each other, at an angle etc. Let us see how work is calculated in these different situations.
āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ•্āϤ āĻšāĻ“ā§Ÿাāϰ āĻĒāϰ āϤাāϰ āϏāϰāĻŖেāϰ āĻ…āĻ­িāĻŽুāĻ– āĻ…āύুāϝা⧟ী āĻ•াāϰ্āϝ āĻŦিāĻ­িāύ্āύ āϧāϰāĻŖেāϰ āĻšāϤে āĻĒাāϰে। āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ•্āϰি⧟া⧟, āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ āϘāϟāϤে āĻĒাāϰে (1) āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāχ (2) āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āĻŦিāĻĒāϰীāϤে (3) āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āϏাāĻĨে āϞāĻŽ্āĻŦāĻ­াāĻŦে। āĻāχ āϤিāύāĻ•্āώেāϤ্āϰেāχ āĻ•াāϰ্āϝেāϰ āϧāϰāĻŖ āϤিāύāϰāĻ•āĻŽ āĻšā§Ÿ।

(1) When a force is applied at an angle with the horizontal direction (Displacement at an angle to the force):

Work, Power, Energy, Study Material, CBSE Board, WBSSE BoardLet a force F be applied on a wooden block at an angle \(\theta \) with the horizontal direction as shown in figure.
Here the component of force F in the horizontal direction = \(F\cos \theta \)
and the component of F in the vertical direction = \(F\sin \theta \)
Let the block moves horizontally and occupies a new position B so that it travels a distance s horizontally. Since, \(F\sin \theta \) does not produce displacement in the block in the upward direction, so the only force which displace the block is \(F\cos \theta \). According to the definition of work done,
\(W = Force(applied) \times dis\tan ce(travelled)\)
or, \(W = F\cos \theta  \times d\)
or, \(W = Fd\cos \theta \)
or, \(W = F.d\)
Here \(F.d\) is read as dot product of F and d.
Thus, work done on a body by a force is defined as the product of the magnitude of the displacement and the force in the direction of the displacement.


āϧāϰাāϝাāĻ• āĻāĻ•āϟি āĻ•াāĻ েāϰ āĻŦāϞেāϰ āωāĻĒāϰ F āĻŽাāύেāϰ āĻŦāϞ āĻ…āύুāĻ­ূāĻŽিāĻ•েāϰ āϏাāĻĨে \(\theta \) āĻ•োāĻŖে āĻ•্āϰি⧟া āĻ•āϰāĻ›ে। āĻāĻ•্āώেāϤ্āϰে āĻāχ F āĻŦāϞāϟিāϰ āĻ…āύুāĻ­ূāĻŽিāĻ• āĻŦāϰাāĻŦāϰ āωāĻĒাংāĻļ \(F\cos \theta \) āĻāĻŦং āωāϞ্āϞāĻŽ্āĻŦ āĻŦāϰাāĻŦāϰ āωāĻĒাংāĻļ \(F\sin \theta \)। āĻ•াāĻ েāϰ āĻŦ্āϞāĻ•āϟিāϰ āωāĻĒāϰ āφāύāϤāĻ­াāĻŦে āĻāχ F āĻŦāϞেāϰ āĻ•্āϰি⧟া⧟, āĻŦ্āϞāĻ•āϟিāϰ āϏāϰāĻŖ āĻ…āύুāĻ­ূāĻŽিāĻ• āĻĻিāĻ•ে āĻšā§Ÿ d। āϤাāχ āĻāĻ•্āώেāϤ্āϰে āĻ•ৃāϤāĻ•াāϰ্āϝ āĻšā§Ÿ
āĻ•ৃāϤāĻ•াāϰ্āϝ = āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞ \( \times \) āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–ে āϏāϰāĻŖ
āĻŦা, \(W = F\cos \theta  \times d\)
āĻŦা, \(W = Fd\cos \theta \)
āĻŦা, \(W = F.d\)
āĻāĻ–াāύে āĻāχ \(F.d\) āĻ•ে āĻŦāϞ āĻ“ āϏāϰāĻŖেāϰ āĻĄāϟ āĻ—ুāύāĻĢāϞ āĻŦāϞে। āĻāχ āĻĄāϟ āĻ—ুāύāĻĢāϞ āϏāĻŽ্āĻĒāϰ্āĻ•ে āφāĻŽāϰা āωāϚ্āϚāϤāϰ āĻļ্āϰেāĻŖিāϤে āϜাāύāĻŦো।

(2) When a constant force is applied in the horizontal direction:
Here two case arrived.
(i) Displacement is in the direction of the force i.e, displacement is along the force, this is also called Positive Work Done
āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ•্āϤ āĻšāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰ⧟োāĻ—āĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāχ āĻšā§Ÿ, āϤāĻ–āύ āĻŦāϞা āĻšā§Ÿ āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞ āĻĻ্āĻŦাāϰা āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§ŸেāĻ›ে। āĻāĻ•ে āϧāύাāϤ্āĻŦāĻ• āĻ•াāϰ্āϝ āĻŦāϞে। 
(ii) Displacement is in the direction opposite to the force i.e, displacement is opposite the force, this is also called Negative Work Done.
āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ•্āϤ āĻšāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰ⧟োāĻ—āĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āĻŦিāĻĒāϰীāϤ āĻĻিāĻ•ে āĻšā§Ÿ, āϤāĻ–āύ āĻŦāϞা āĻšā§Ÿ āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§ŸেāĻ›ে। āĻāĻ•ে āĻ‹āύাāϤ্āĻŦāĻ• āĻ•াāϰ্āϝ āĻŦāϞা āĻšā§Ÿ।
 
Let a constant force F be applied on a wooden block placed at position A on the smooth surface as shown in figure. Suppose the block moves in the direction of applied force to the new position B so that its displacement is s. Then, work done by the force is given by
\(W = F.d\)
Thus, work done on the block (or any other object) by a constant force is equal to the product of the magnitude of the applied force and the distance travelled by the body.
āϧāϰাāϝাāĻ•, F āĻŽাāύেāϰ āĻāĻ•āϟি āĻŦāϞেāϰ āĻ•্āϰি⧟া⧟ āĻāĻ•āϟি āĻ•াāĻ েāϰ āĻŦ্āϞāĻ• A āĻŦিāύ্āĻĻু āĻĨেāĻ•ে B āĻŦিāύ্āĻĻুāϤে āϏāϰে āϝা⧟। āĻāϤে āĻŦ্āϞāĻ•āϟিāϰ āϏāϰāĻŖেāϰ āĻŽাāύ d āĻšāϞে āĻ•ৃāϤāĻ•াāϰ্āϝ āĻšā§Ÿ
\(W = F.d\)

(i) Positive Work Done: If the displacement of an object is in the direction of the force applied on it, the amount of the work done by the force on this object is obtained by multiplying the force and the displacement. Here the force is acting in the direction of displacement then, the work done is positive. In this case \(\theta  = 0^\circ \) i.e., the force F acts in the direction of displacements of the body.
Study Material, Work, Power, Energy, Class IX, CBSE, WBSSE\(work - done = force \times displacement\)
If we denote work, force and displacement by W, F and d respectively then
\(W = Fd\cos \theta \)
or, \(W = Fd\cos 0^\circ \)
or, \(W = F.d\)   [\(\cos 0^\circ  = 1\)]

āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ•্āϤ āĻšāϞে āϝāĻĻি āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ•্āϰি⧟া⧟ āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–ে āϘāϟে āϤāĻ–āύ āĻŦāϞা āĻšā§Ÿ āĻŦāϞ āĻĻ্āĻŦাāϰা āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§ŸেāĻ›ে āĻāĻŦং āĻāχ āĻ•াāϰ্āϝāĻ•ে āϧāύাāϤ্āĻŦāĻ• āĻ•াāϰ্āϝ āĻŦāϞে।
āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻ•ে āφāĻŽāϰা āĻĒাāχ,
\(W = Fd\cos \theta \)
āĻŦা, \(W = Fd\)   [āĻāĻ•্āώেāϤ্āϰে \(\theta  = 0^\circ \) āĻāĻŦং \(\cos 0^\circ  = 1\)]
āĻ…āϰ্āĻĨাā§Ž āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ•্āϰি⧟া⧟ āĻŦāϏ্āϤুāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāχ āϘāϟāϞে āĻ•ৃāϤāĻ•াāϰ্āϝ āĻļুāϧুāĻŽাāϤ্āϰ āĻāχ āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻŽাāύ āĻ“ āϏāϰāĻŖেāϰ āĻ—ুāύāĻĢāϞ āĻĻ্āĻŦাāϰাāχ āύিāϰ্āϪ⧟ āĻ•āϰা āϝা⧟। āĻāχ āĻĒ্āϰāĻ•াāϰ āĻ•ৃāϤāĻ•াāϰ্āϝ āĻšāϞ āϧāύাāϤ্āĻŦāĻ•।

Example:
(a) In a tug of war, the work done by a wining team is positive. The winning team applies a force on the rope in the backward direction and the rope is also displaced in the direction of applied force.

(b) When an object falls from a height, its displacement is in the direction downward under the force of gravity. 
āϝāĻ–āύ āĻāĻ•āϟি āĻŦāϏ্āϤু āωāĻĒāϰ āĻĨেāĻ•ে āύীāϚেāϰ āĻĻিāĻ•ে āĻĒ⧜ে āϤāĻ–āύ āĻ…āĻ­িāĻ•āϰ্āώ āĻŦāϞ āύীāϚেāϰ āĻĻিāĻ•ে āĻ•্āϰি⧟া āĻ•āϰে, āĻāĻ•্āώেāϤ্āϰে āĻŦāϞāϟিāϰāĻ“ āϏāϰāĻŖ āύীāϚেāϰ āĻĻিāĻ•ে āĻšā§Ÿ। āϤাāχ āĻāĻ•্āώেāϤ্āϰে āĻāχ āĻ…āĻ­িāĻ•āϰ্āώ āĻŦāϞ, āĻŦāϞেāϰ āĻĒāĻ•্āώে āĻ•াāϰ্āϝ āĻ•āϰে āĻāĻŦং āĻāχ āĻ•াāϰ্āϝ āϧāύাāϤ্āĻŦāĻ• āĻšā§Ÿ।

(c) If you push a book along a table, the displacement of the book is along the direction of the force you exert.
āϟেāĻŦিāϞে āϰাāĻ–া āĻāĻ•āϟি āĻŦāĻ‡ā§Ÿেāϰ āωāĻĒāϰ āĻŦāϞāĻĒ্āϰ⧟োāĻ— āĻ•āϰে āĻŦāχāϟিāĻ•ে āϏāϰাāϞে, āĻāĻ•্āώেāϤ্āϰেāĻ“ āĻŦāχāϟিāϰ āϏāϰāĻŖ āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–ে āϘāϟে। āϤাāχ āĻāϟিāĻ“ āĻŦāϞেāϰ āĻĒāĻ•্āώে āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§Ÿ āĻāĻŦং āĻāϟি āϧāύাāϤ্āĻŦāĻ• āĻ•াāϰ্āϝ।
Study Material, Work, Power, Energy, Class IX, CBSE Board, WBBSE Baord (d) When we kick a football lying on the ground, then the football starts moving. The force of our kick has moved the football. Here we have applied the force in the direction of motion of football. So, the work done on the football in this case is positive.

(ii) Negative Work Done: If the displacement of an object is in the opposite direction of the force
applied on it, the amount of the work done by the force on this object is obtained by multiplying the force and the displacement. Here the force is acting in the opposite direction of displacement then, the work done is negative. In this case \(\theta  = 180^\circ \) i.e., the force F acts in the opposite direction of displacements of the body.
Study Material, Work, Power, Energy, CBSE, WBSSE, Class IX\(work - done = force \times displacement\)
If we denote work, force and displacement by W, F and d respectively then
\(W = Fd\cos \theta \)
or, \(W = Fd\cos 180^\circ \)
or,\(W =  - Fd\)    [\(\cos 180^\circ  =  - 1\)]

āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ•্āϤ āĻšāϞে āϝāĻĻি āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ•্āϰি⧟া⧟ āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āĻŦিāĻĒāϰীāϤে āĻšā§Ÿ, āϤāĻ–āύ āĻŦāϞা āĻšā§Ÿ āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§ŸেāĻ›ে। āĻāĻŦং āĻāχ āĻ•াāϰ্āϝāĻ•ে āĻ‹āύাāϤ্āĻŦāĻ• āĻ•াāϰ্āϝ āĻŦāϞে।
āĻ•ৃāϤāĻ•াāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻ•ে āĻĒাāχ,
\(W = Fd\cos \theta \)
āĻŦা, \(W = Fd\cos 180^\circ \)
āĻŦা, \(W =  - Fd\)   [āĻāĻ•্āώেāϤ্āϰে \(\theta  = 180^\circ \) āĻāĻŦং \(\theta  = 180^\circ \)]
āĻ…āϰ্āĻĨাā§Ž āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ•্āϰি⧟া⧟ āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āĻŦিāĻĒāϰীāϤে āϘāϟāϞে āϏেāχ āĻĒ্āϰāĻ•াāϰ āĻ•াāϰ্āϝ āĻ‹āύাāϤ্āĻŦāĻ• āĻšā§Ÿ। āĻāĻ•ে āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻ•াāϰ্āϝ āĻŦāϞে।

Example:
(a) In a tug of war, the work done by the losing team is negative. The losing team applies a force on the rope in the backward direction but the rope is displaced in the forward direction.

(b) When a ball is thrown up, its displacement is in the upward direction, whereas the force due to the earth's gravity is in the downward direction.
āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āωāĻĒāϰেāϰ āĻĻিāĻ•ে āĻ›োঁ⧜া āĻšāϞে āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ āωāĻĒāϰেāϰ āĻĻিāĻ•ে āĻšā§Ÿ। āĻ•িāύ্āϤু āĻ…āĻ­িāĻ•āϰ্āώ āĻŦāϞ āϏāϰ্āĻŦāĻĻা āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻ•্āϰি⧟া āĻ•āϰে। āϤাāχ āĻāĻ•্āώেāϤ্āϰে āĻ…āĻ­িāĻ•āϰ্āώ āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§Ÿ āĻāĻŦং āĻāχ āĻ•াāϰ্āϝ āĻ‹āύাāϤ্āĻŦāĻ•।

Study Material, Work, Power, Energy, Class IX, Mechanics

(c) A football moving on the ground slows down gradually and ultimately stops. This is because a force due to friction (of ground) acts on the football. The force of friction acts in a direction opposite to the direction of motion of football. So, in this case the work done by the force of friction on the football is negative.

(d) āĻŽাāϟিāϰ āωāĻĒāϰে āĻĨাāĻ•া āĻāĻ•āϟি āĻ•াāĻ েāϰ āĻŦ্āϞāĻ•āĻ•ে āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰে āϏāϰাāϞে āϘāϰ্āώāĻŖ āĻŦāϞ, āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻŦিāĻĒāϰীāϤ āĻ…āĻ­িāĻŽুāĻ–ে āĻ•্āϰি⧟া āĻ•āϰে। āĻāĻŦং āĻŦ্āϞāĻ•āϟিāϰ āϏāϰāĻŖ āĻ•িāύ্āϤু āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–ে āĻšā§Ÿ। āϤাāχ āĻāĻ•্āώেāϤ্āϰে āϘāϰ্āώāύ āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§Ÿ āĻāĻŦং āĻāχ āϘāϰ্āώāĻŖ āĻŦāϞ āĻĻ্āĻŦাāϰা āĻ•ৃāϤāĻ•াāϰ্āϝ āĻ‹āύাāϤ্āĻŦāĻ•।

(3) When a constant force is applied on a body and displacement caused perpendicular to the force applied (Displacement in the direction perpendicular to the force ), this is also called Zero Work Done: 
Work, Power & Energy Study Material
If the displacement of an object is perpendicular to the force acting on it, the work done by the force on the object is zero. If the force is acting perpendicular to the displacement then work done is zero. In this case \(\theta \) = \(90^\circ \)
i.e, force F acts at right angles to the displacement of the body,
then \(W = Fd\cos 90^\circ \)
or, \(W = 0\)  [\(\cos 90^\circ  = 0\)]
Therefore no work is done by force

āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ•্āϤ āĻšāϞে, āϝāĻĻি āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ āĻŦāϞ āĻĒ্āϰ⧟োāĻ—েāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āϏাāĻĨে āϞāĻŽ্āĻŦāĻ­াāĻŦে āĻšā§Ÿ, āϤāĻ–āύ āĻ“āχ āĻŦāϞেāϰ āĻĻ্āĻŦাāϰা āĻ•োāύāĻ“ āĻ•ৃāϤāĻ•াāϰ্āϝ āĻ•āϰা āĻšā§Ÿ āύা।  āĻāĻ•্āώেāϤ্āϰে āĻŦāϞ āĻĻ্āĻŦাāϰা āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§Ÿ। āĻāχ āϧāϰāύেāϰ āĻŦāϞāĻ•ে āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞ āĻŦāϞে। āĻ…āϰ্āĻĨাā§Ž āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–, āϏāϰāĻŖেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āϏাāĻĨে āϏāĻŽāĻ•োāĻŖে āĻ•্āϰি⧟াāĻļীāϞ āĻšāϞে āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§Ÿ।
āĻ•ৃāϤāĻ•াāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻ•ে āĻĒাāχ,
āĻ•ৃāϤāĻ•াāϰ্āϝ = āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞ \( \times \) āĻŦāϞেāϰ āĻĒ্āϰ⧟োāĻ—āĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ
āĻŦা, \(W = Fd\cos \theta \)
āĻŦা, \(W = Fd\cos 90^\circ \)
āĻŦা, \(W = 0\)   [āĻāĻ•্āώেāϤ্āϰে \(\theta  = 90^\circ \) āĻāĻŦং \(\cos 90^\circ  = 0\)]
āĻ…āϰ্āĻĨাā§Ž āĻŦāϞ āĻĒ্āϰ⧟োāĻ—ে āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āϏāϰāĻŖ āĻŦāϏ্āϤুāϟিāϰ āωāĻĒāϰ āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āϏāĻ™্āĻ—ে āϞāĻŽ্āĻŦ āĻšāϞে āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§Ÿ।

Example:
(a) Work done by the force of gravity on a box lying on the roof of a bus moving with a constant velocity on a straight road is zero. In this case, force of gravity acts vertically downward and the displacement of the box takes place horizontally.

(b) When an aeroplane flying in the sky, the force of gravity acts downward direction, whereas the aeroplane's displacement is in the horizontal direction. Here the gravity force and the displacement are perpendicular to each other.

(c) When a porter moves on a railway platform with a heavy load on his head, he exert a vertically upward force on the load. But, the displacement of the load is in the horizontal direction. The load has not moved any distance in the vertical direction, and hence the work done by the force exerts by the porter is zero. So, the porter does no work on the load when he moves on the railway platform. (Why do people pay him?)

(d) To keep a body moving in a circle, there must be a force acting on it directed towards the center. This force is called centripetal force. Now when a body moves in a circular path, then the centripetal force acts along the radius of the circle, and it is at right angles to the motion of the body. Thus the work done on a body moving in a circular path is zero. Thus the work done in the case of earth moving round the sun is zero.

(e) The satellite (like the moon) move around the earth in a circular path. In this case the gravitational force of earth acts on the satellite at right angles to the direction of motion of satellite. So, the work done by the earth on the satellite moving around it in circular path is zero.

(f) Similarly the work done by the sun on planets (like the earth) moving around it in circular orbit is zero. 
Study Material, Work, Power, Energy, CBSE Board, WBSSE Board
āĻĒৃāĻĨিāĻŦী, āϏূāϰ্āϝেāϰ āϚাāϰিāĻĻিāĻ•ে āĻŦৃāϤ্āϤাāĻ•াāϰ āĻ•āĻ•্āώāĻĒāĻĨে āφāĻŦāϰ্āϤāύ āĻ•āϰে। āĻāĻ–াāύে āϏূāϰ্āϝ āĻ“ āĻĒৃāĻĨিāĻŦীāϰ āĻŽāϧ্āϝে āϏāϰ্āĻŦāĻĻা āĻŽāĻšাāĻ•āϰ্āώ āĻŦāϞ āĻ•্āϰি⧟া āĻ•āϰে āĻāĻŦং āĻĒৃāĻĨিāĻŦীāϰ āϏāϰāĻŖ āĻ•āĻ•্āώāĻĒāĻĨেāϰ āϏ্āĻĒāϰ্āĻļāĻ• āĻŦāϰাāĻŦāϰ āĻ…āϰ্āĻĨাā§Ž āĻāχ āĻŽāĻšাāĻ•āϰ্āώ āĻŦāϞেāϰ āϏাāĻĨে āϞāĻŽ্āĻŦāĻ­াāĻŦে āĻ•্āϰি⧟া āĻ•āϰে। āϤাāχ āĻāĻ–াāύেāĻ“ āĻĒৃāĻĨিāĻŦী āĻ•োāύāĻ“ āĻ•াāϜ āĻ•āϰে āύা āĻāĻŦং āĻŽāĻšাāĻ•āϰ্āώ āĻŦāϞ āĻāĻ–াāύে āĻāĻ•āϟি āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞ।

(g) āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āĻ…āύুāĻ­ূāĻŽিāĻ• āĻĻিāĻ•ে āϟেāύে āύি⧟ে āĻ—েāϞে āĻŦāϏ্āϤুāϟিāϰ āĻ“āϜāύ āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻ•্āϰি⧟া āĻ•āϰে, āĻ•িāύ্āϤু āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ āĻāχ āĻ•্āϰি⧟াāĻļীāϞ āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ী āĻ“āϜāύেāϰ āϏাāĻĨে āĻ…āύুāĻ­ূāĻŽিāĻ• āĻŦāϰাāĻŦāϰ āϞāĻŽ্āĻŦāĻ­াāĻŦে āĻ—āϤিāĻļীāϞ āĻšā§Ÿ। āϤাāχ āĻāĻ–াāύে āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻāĻŦং āĻāĻ•্āώেāϤ্āϰে āĻāχ āĻ“āϜāύ āĻāĻ•āϟি āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞ। 

(h) āϧāϰাāϝাāĻ• āĻāĻ• āĻŦ্āϝāĻ•্āϤি āĻāĻ•āϟি āϏুāϟāĻ•েāĻļ āĻšাāϤে āύি⧟ে āĻ…āύুāĻ­ূāĻŽিāĻ• āĻĒāĻĨে āĻšেঁāϟে āϝাāϚ্āĻ›ে। āĻāĻ–াāύে āϏুāϟāĻ•েāĻļāϟিāϰ āĻ“āϜāύ āωāϞ্āϞāĻŽ্āĻŦāĻ­াāĻŦে āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻ•্āϰি⧟াāĻļীāϞ। āĻ•িāύ্āϤু āϏুāϟāĻ•েāĻļāϟিāϰ āϏāϰāĻŖ āϤāĻĨা āĻŦ্āϝāĻ•্āϤিāϰ āϏāϰāĻŖ āĻ…āύুāĻ­ূāĻŽিāĻ• āĻŦāϰাāĻŦāϰ āĻ…āϰ্āĻĨাā§Ž āĻ“āϜāύেāϰ āϏāĻŽāĻ•োāĻŖে āĻ•্āϰি⧟াāĻļীāϞ। āϤাāχ āĻāĻ•্āώেāϤ্āϰে āĻ•োāύāĻ“ āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§Ÿ āύা āĻāĻŦং āĻāχ āĻ…āĻ­িāĻ•āϰ্āώāϜāύিāϤ āĻ“āϜāύ āĻāĻ–াāύে āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞ।


āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ•্āϤ āĻšāϞেāĻ“ āĻ•োāύ্‌ āĻ•োāύ্‌ āĻ•্āώেāϤ্āϰে āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§Ÿ āύা?
āφāĻŽāϰা āĻ•ৃāϤāĻ•াāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻ•ে āĻĒাāχ,
\(W = Fd\cos \theta \) ... ... ... ... (i)
(1) āĻāĻ–āύ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰা āϏāϤ্āϤ্āĻŦেāĻ“ āϏāϰāĻŖেāϰ āĻŽাāύ āĻ…āϰ্āĻĨাā§Ž āϝāĻĻি d āĻāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§Ÿ, āϏেāĻ•্āώেāϤ্āϰে āĻ•ৃāϤāĻ•াāϰ্āϝ W = 0।

āϝেāĻŽāύ: (a) āĻ…āύেāĻ• āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰে āĻāĻ•āϟি āĻŦ⧜ো āĻĒাāĻĨāϰāĻ–āύ্āĻĄāĻ•ে āϏāϰাāύোāϰ āϚেāώ্āϟা āĻ•āϰা āĻšāϞ। āĻ•িāύ্āϤু āϏেāϟি āĻāĻ•āϟুāĻ•ুāĻ“ āϏāϰāϞ āύা। āĻāĻ•্āώেāϤ্āϰে āϏāϰāĻŖ d āĻāϰ āĻŽাāύ āĻļূāύ্āϝ, āϤাāχ āĻ•ৃāϤāĻ•াāϰ্āϝ āĻļূāύ্āϝ āĻšā§Ÿ। 
(b) āφāĻŦাāϰ āϝāĻ–āύ āĻ•োāύāĻ“ āĻŦ্āϝāĻ•্āϤি āύāĻĻীāϰ āϏ্āϰোāϤেāϰ āĻŦিāĻĒāĻ•্āώে āϏাঁāϤাāϰ āĻ•াāϟাāϰ āϚেāώ্āϟা āĻ•āϰেāĻ“ āĻāĻ•āϟুāĻ•ুāĻ“ āĻāĻ—ি⧟ে āϝেāϤে āĻĒাāϰে āύা, āϏেāĻ•্āώেāϤ্āϰেāĻ“ āϏāϰāĻŖ d āĻāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§Ÿ। āϤাāχ āĻāĻ–াāύেāĻ“ āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§Ÿ। 
(c) āĻĻ⧜ি āϟাāύাāϟাāύি āĻ–েāϞা⧟ āωāϭ⧟āĻĒāĻ•্āώ āϏāĻŽাāύ āϜোāϰে āĻĻ⧜ি āϟাāύāϞে āĻĻ⧜িāϰ āĻ•োāύāĻ“ āϏāϰāĻŖ āĻšā§Ÿ āύা। āϤাāχ āĻĻুāχāĻĒāĻ•্āώ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰāϞেāĻ“ āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§Ÿ।

(2) āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰাāϰ āĻĒāϰ āϝāĻĻি āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āϏাāĻĨে āϏāĻŽāĻ•োāĻŖে āĻšā§Ÿ, āϏেāĻ•্āώেāϤ্āϰেāĻ“ āĻ“āχ āĻŦāϞ āĻĻ্āĻŦাāϰা āĻ•ৃāϤāĻ•াāϰ্āϝ āĻšā§Ÿ āύা। āĻ•াāϰāύ āĻāĻ•্āώেāϤ্āϰে āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞ āĻ“ āϏāϰāĻŖেāϰ āĻŽāϧ্āϝāĻŦāϰ্āϤী āĻ•োāĻŖ āĻšā§Ÿ \(\theta  = 90^\circ \)। āĻ•ৃāϤāĻ•াāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻ•ে āĻĒাāχ,
\(W = Fd\cos \theta \)
āĻāĻ•্āώেāϤ্āϰে \(\theta  = 90^\circ \) āĻšāĻ“ā§Ÿা⧟ \(\cos \theta  = \cos 90^\circ  = 0\)
āϤাāχ āĻ•ৃāϤāĻ•াāϰ্āϝ \(W = 0\) āĻšā§Ÿ।

āϝেāĻŽāύ: (a) āϝāĻ–āύ āĻ•োāύāĻ“ āĻŦāϏ্āϤু āĻŦৃāϤ্āϤাāĻ•াāϰ āĻĒāĻĨে āφāĻŦāϰ্āϤāύ āĻ•āϰে āϤāĻ–āύ āĻŦāϏ্āϤুāϟিāϰ āωāĻĒāϰ āĻ…āĻ­িāĻ•েāύ্āĻĻ্āϰ āĻŦāϞ āĻ•্āϰি⧟াāĻļীāϞ āĻšā§Ÿ āĻāĻŦং āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ āĻŦৃāϤ্āϤাāĻ•াāϰ āĻĒāĻĨেāϰ āϏ্āĻĒāϰ্āĻļāĻ• āĻŦāϰাāĻŦāϰ āĻ…āϰ্āĻĨাā§Ž āĻ…āĻ­িāĻ•েāύ্āĻĻ্āϰ āĻŦāϞেāϰ āϏাāĻĨে āϏāϰ্āĻŦāĻĻা āϞāĻŽ্āĻŦāĻ­াāĻŦে āĻ•্āϰি⧟া āĻ•āϰে। āĻāĻ•্āώেāϤ্āϰে āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ– āĻ“ āϏāϰāĻŖেāϰ āĻ…āĻ­িāĻŽুāĻ– āϏāĻŽāĻ•োāĻŖে āĻĨাāĻ•া⧟ āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§Ÿ। 
(b) āĻ…āύুāĻ­ূāĻŽিāĻ• āϤāϞ āĻŦāϰাāĻŦāϰ āĻ•োāύāĻ“ āĻŦ্āϝāĻ•্āϤি āĻšাāϤে āĻāĻ•āϟি āĻŦāϏ্āϤু āύি⧟ে āĻšেঁāϟে āϚāϞāϞে, āĻŦāϏ্āϤুāϟিāϰ āωāĻĒāϰ āϏāϰ্āĻŦāĻĻা āĻ…āĻ­িāĻ•āϰ্āώ āĻŦāϞ āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻ•্āϰি⧟াāĻļীāϞ āĻšā§Ÿ āĻāĻŦং āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ āĻ…āύুāĻ­ূāĻŽিāĻ• āĻŦāϰাāĻŦāϰ āϘāϟে। āĻāĻ•্āώেāϤ্āϰেāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻ•্āϰি⧟াāĻļীāϞ āĻ…āĻ­িāĻ•āϰ্āώ āĻŦāϞ āĻ“ āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ āϞāĻŽ্āĻŦāĻ­াāĻŦে āĻšāĻ“ā§Ÿা⧟ \(\theta  = 90^\circ \) āĻāĻŦং āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§Ÿ। 

āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞ āĻ•াāĻ•ে āĻŦāϞে?
What is No-Work Force?
āϝে āϏāĻŽāϏ্āϤ āĻ•্āώেāϤ্āϰে āĻ•োāύāĻ“ āĻŦāϏ্āϤুāϰ āωāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ•্āϤ āĻšāϞে āϝāĻĻি āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āϏাāĻĨে āϏāĻŽāĻ•োāĻŖে āĻ•্āϰি⧟া āĻ•āϰে, āϏেāĻ•্āώেāϤ্āϰে āĻ“āχ āĻŦāϞāϟি āĻ•োāύāĻ“ āĻ•াāϰ্āϝ āϏāĻŽ্āĻĒাāĻĻāύ āĻ•āϰে āύা। āĻāχ āϧāϰāĻŖেāϰ āĻŦāϞāĻ•ে āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞ āĻŦāϞে।
Study Material, Work, Power, Energy, Class IX, CBSE Board, WBSSE Board
āĻ•ৃāϤāĻ•াāϰ্āϝ āĻĒāϰিāĻŽাāύেāϰ āϰাāĻļিāĻŽাāϞা āĻĨেāĻ•ে āĻĒাāχ,  \(W = Fd\cos \theta \)
āĻāĻ–āύ āĻŦāϞ āĻĒ্āϰ⧟োāĻ—েāϰ āĻĢāϞে, āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖেāϰ āĻ…āĻ­িāĻŽুāĻ– āϞāĻŽ্āĻŦāĻ­াāĻŦে āĻšāϞে \(\theta  = 90^\circ \) āĻāĻŦং \(\cos \theta  = \cos 90^\circ  = 0\), āϤাāχ āĻ•ৃāϤāĻ•াāϰ্āϝ \(W = 0\) āĻšā§Ÿ।  āĻāχ āϧāϰāύেāϰ āĻŦāϞāĻ•ে āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞ āĻŦāϞে।
āϝেāĻŽāύ,
āĻĒৃāĻĨিāĻŦী āϏূāϰ্āϝেāϰ āϚাāϰিāĻĻিāĻ•ে āĻŦৃāϤ্āϤাāĻ•াāϰ āĻĒāĻĨে āφāĻŦāϰ্āϤāύ āĻ•āϰে। āĻāĻ•্āώেāϤ্āϰে āϏূāϰ্āϝ āĻ“ āĻĒৃāĻĨিāĻŦীāϰ āĻŽāϧ্āϝে āĻŽāĻšাāĻ•āϰ্āώ āĻŦāϞ āĻ•্āϰি⧟া āĻ•āϰে āĻāĻŦং āĻĒৃāĻĨিāĻŦী āĻāχ āĻ•্āϰি⧟াāĻļীāϞ āĻŽāĻšাāĻ•āϰ্āώ āĻŦāϞেāϰ āϏাāĻĨে āϏāϰ্āĻŦāĻĻা āϏāĻŽāĻ•োāĻŖে āĻĨেāĻ•ে āĻ—āϤিāĻļীāϞ āĻšā§Ÿ। āϤাāχ āĻāĻ–াāύে āĻāχ āĻŽāĻšাāĻ•āϰ্āώ āĻŦāϞ āĻāĻ•āϟি āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞ।

āĻ…āύেāĻ•āϏāĻŽā§Ÿ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰাāϰ āĻĢāϞে āĻŦāϏ্āϤুāϟিāϰ āϏাāĻŽāĻ—্āϰিāĻ• āĻ•োāύāĻ“ āϏāϰāĻŖ āϘāϟে āύা। āϤāĻŦুāĻ“ āĻŦāϏ্āϤুāϟিāϰ āĻ­িāϤāϰāĻ•াāϰ āφāĻ•াāϰ, āφāĻ•ৃāϤি, āĻ†ā§ŸāϤāύāϜāύিāϤ āĻĒāϰিāĻŦāϰ্āϤāύেāϰ āĻ•াāϰāĻŖে āĻ“āχ āĻŦāϞ āĻ•াāϜ āĻ•āϰে āĻĨাāĻ•ে:
āϝেāĻŽāύ, 
(1) āĻāĻ•āϟি āϏ্āĻĒ্āϰিং āĻ•ে āĻĻুāĻĻিāĻ• āϧāϰে āϟাāύ āĻĻিāϞে āϏ্āĻĒ্āϰিংāϟি āϏাāĻŽāĻ—্āϰিāĻ•āĻ­াāĻŦে āϏ্āĻĨাāύ āĻĒāϰিāĻŦāϰ্āϤāύ āĻ•āϰে āύা। āĻ•িāύ্āϤু āϏ্āĻĒ্āϰিং āϟিāϰ āφāĻ•াāϰ, āĻ†ā§ŸāϤāύেāϰ āĻĒāϰিāĻŦāϰ্āϤāύ āϘāϟে। āϏ্āĻĒ্āϰিং āϟিāϰ āĻ­িāϤāϰে āĻ›োāϟো āĻ›োāϟো āĻ…ংāĻļেāϰ āϏāϰāĻŖ āϘāϟে। āĻĢāϞে āĻāĻ–াāύে āĻŦāϞ āĻ•াāϜ āĻ•āϰে। āϝāĻĻিāĻ“ āϏ্āĻĒ্āϰিংāϟিāϰ āϏাāĻŽāĻ—্āϰিāĻ•āĻ­াāĻŦে āĻ•োāύāĻ“ āϏāϰāĻŖ āϘāϟে āύা।
(2) āĻāĻ•āϟি āĻĒাāĻŽ্āĻĒাāϰেāϰ āϏাāĻšাāϝ্āϝে āĻāĻ•āϟি āĻŦেāϞুāύāĻ•ে āĻĢোāϞাāϞে, āĻŦেāϞুāύāϟিāϰ āφāĻ•াāϰ, āĻ†ā§ŸāϤāύ āĻĒāϰিāĻŦāϰ্āϤিāϤ āĻšā§Ÿ। āĻ•িāύ্āϤু āĻĒাāĻŽ্āĻĒাāϰেāϰ āĻ•োāύāĻ“ āϏāϰāĻŖ āĻšā§Ÿ āύা। āĻāĻ–াāύে āĻĒাāĻŽ্āĻĒাāϰেāϰ āϏাāĻŽāĻ—্āϰিāĻ•āĻ­াāĻŦে āϏāϰāĻŖ āύা āĻšāϞেāĻ“ āĻĒাāĻŽ্āĻĒাāϰ āĻ•িāύ্āϤু āĻ•াāϰ্āϝ āĻ•āϰে। 

SAMPLE QUESTION & ANSWER

() āĻ•াāϰ্āϝ āĻ•াāĻ•ে āĻŦāϞে? āωāĻĻাāĻšāϰāĻŖ āĻĻাāĻ“।
() CGS āĻ“ SI āĻĒāĻĻ্āϧāϤিāϤে āĻ•াāϰ্āϝেāϰ āĻĒāϰāĻŽ āĻāĻ•āĻ•āĻ—ুāϞি āĻ•ি āĻ•ি?
() CGS āĻ“ SI āĻĒāĻĻ্āϧāϤিāϤে āĻ•াāϰ্āϝেāϰ āĻ…āĻ­িāĻ•āϰ্āώী⧟ āĻāĻ•āĻ•āĻ—ুāϞি āĻ•ি āĻ•ি?
() 1 āφāϰ্āĻ— āĻ•াāϰ্āϝ āĻ•াāĻ•ে āĻŦāϞে?
() 1 āϜুāϞ āĻ•াāϰ্āϝ āĻ•াāĻ•ে āĻŦāϞে?
() 1 āĻ—্āϰাāĻŽ-āϏেāĻŽি āĻ•াāϰ্āϝ āĻ•াāĻ•ে āĻŦāϞে?
() 1 āĻ•িāϞোāĻ—্āϰাāĻŽ-āĻŽিāϟাāϰ āĻ•াāϰ্āϝ āĻ•াāĻ•ে āĻŦāϞে?
() āĻ•াāϰ্āϝ āĻ•োāύ্‌ āϰাāĻļি?
() āĻ•াāϰ্āϝেāϰ āĻŽাāϤ্āϰা āϏāĻŽীāĻ•āϰāĻŖāϟি āĻĒ্āϰāϤিāώ্āĻ া āĻ•āϰো।
() āϜুāϞ āĻ“ āφāϰ্āĻ—েāϰ āĻŽāϧ্āϝে āϏāĻŽ্āĻĒāϰ্āĻ•āϟি āĻĒ্āϰāϤিāώ্āĻ া āĻ•āϰো।
() āĻ—্āϰাāĻŽ-āϏেāĻŽি āĻ“ āφāϰ্āĻ—েāϰ āĻŽāϧ্āϝে āϏāĻŽ্āĻĒāϰ্āĻ•āϟি āĻĒ্āϰāϤিāώ্āĻ া āĻ•āϰো।
() āĻ•িāĻ—্āϰা-āĻŽিāϟাāϰ āĻ“ āϜুāϞেāϰ āĻŽāϧ্āϝে āϏāĻŽ্āĻĒāϰ্āĻ•āϟি āĻĒ্āϰāϤিāώ্āĻ া āĻ•āϰো।

() āĻŦāϞেāϰ āĻĻ্āĻŦাāϰা āĻ•াāϰ্āϝ āĻŦা āϧāύাāϤ্āĻŦāĻ• āĻ•াāϰ্āϝ āĻ•াāĻ•ে āĻŦāϞে? āωāĻĻাāĻšāϰāĻŖ āĻĻাāĻ“।
() āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻ•াāϰ্āϝ āĻŦা āĻ‹āύাāϤ্āĻŦāĻ• āĻ•াāϰ্āϝ āĻ•াāĻ•ে āĻŦāϞে? āωāĻĻাāĻšāϰāĻŖ āĻĻাāĻ“।
() āĻŦāϏ্āϤুāϤে āĻŦāϞ āĻĒ্āϰāϝুāĻ•্āϤ āĻšāϞেāĻ“ āĻ•ী āĻ•ী āĻ…āĻŦāϏ্āĻĨা⧟ āĻ•াāϰ্āϝ āĻ•āϰা āĻšā§Ÿ āύা?
() āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞ āĻ•াāĻ•ে āĻŦāϞে? āĻāĻ•āϟি āĻ•াāϰ্āϝāĻšীāύ āĻŦāϞেāϰ āωāĻĻাāĻšāϰāĻŖ āĻĻাāĻ“।
() 

āĻŦোāϧāĻŽূāϞāĻ• āĻĒ্āϰāĻļ্āύ:
() āĻāĻ•āϟি āĻŦাāϞāĻ• āĻ•োāύāĻ“ āĻŦৃāϤ্āϤাāĻ•াāϰ āĻĒāĻĨেāϰ āĻāĻ•āϟি āύিāϰ্āĻĻিāώ্āϟ āĻŦিāύ্āĻĻু āĻĨেāĻ•ে āϝাāϤ্āϰা āĻļুāϰু āĻ•āϰে āĻāĻ• āĻĒাāĻ• āϘুāϰে āĻāϏে āφāĻŦাāϰ āϏেāχ āĻŦিāύ্āĻĻুāϤে āĻĢিāϰে āĻāϞ। āĻāϤে āĻŦাāϞāĻ•āϟি āĻĻ্āĻŦাāϰা āϏāĻŽ্āĻĒাāĻĻিāϤ āĻ•াāϰ্āϝ āĻ•āϤ?
() (i) āĻĻ⧜ি āϟাāύাāϟাāύি āĻ–েāϞা⧟ āĻĻূāϰ্āĻŦāϞ āĻĻāϞ āĻļāĻ•্āϤিāĻļাāϞী āĻĻāϞেāϰ āĻ•াāĻ›ে āĻšেāϰে āϝা⧟। āĻāĻŦং (ii) āωāϭ⧟āĻĒāĻ•্āώāχ āϏāĻŽাāύ āϜোāϰে āĻĻ⧜িāϤে āϟাāύ āĻĻে⧟। āĻāχ āĻ•্āώেāϤ্āϰāĻ—ুāϞিāϤে āĻ•াāϰ āĻĻ্āĻŦাāϰা āĻ•ৃāϤāĻ•াāϰ্āϝ āĻ•āϤ āĻšāĻŦে?
() āϏূāϰ্āϝেāϰ āϚাāϰিāĻĒাāĻļে āĻĒৃāĻĨিāĻŦীāϰ āφāĻŦāϰ্āϤāύেāϰ āĻĢāϞে āĻ•াāϰ্āϝ āĻšā§Ÿ āĻ•ি āύা āĻŦ্āϝাāĻ–্āϝা āĻ•āϰো।
() āĻāĻ•āϟি āĻŽোāϟāϰāĻ—া⧜ী āϏāĻŽāĻŦেāĻ—ে āϚāϞāĻ›ে। āĻāĻ•্āώেāϤ্āϰে āĻ—া⧜ীāϰ āχāĻž্āϜিāύ āĻ•োāύāĻ“ āĻ•াāϰ্āϝ āĻ•āϰāĻ›ে āĻ•ি?
() āĻāĻ•āĻŦ্āϝāĻ•্āϤি āϏ্āϰোāϤেāϰ āĻŦিāĻĒāϰীāϤে āϏাঁāϤাāϰ āĻ•েāϟে āϤীāϰāĻ­ূāĻŽি āϏাāĻĒেāĻ•্āώে āύিāϜেāĻ•ে āϏ্āĻĨিāϰ āϰাāĻ–āϤে āϏāĻ•্āώāĻŽ āĻšāϞেāύ। āĻ“āχ āĻŦ্āϝāĻ•্āϤি āĻ•োāύāĻ“ āĻ•াāϰ্āϝ āĻ•āϰāĻ›ে āĻ•ি?
() āĻāĻ•āϟি āĻŦাāϞāĻ• āĻāĻ•āϟি āϜāϞāĻĒূāϰ্āĻŖ āĻŦাāϞāϤি āϤুāϞāϤে āϚেāώ্āϟা āĻ•āϰāϞ। āĻ•িāύ্āϤু āĻŦাāϞāϤিāϟি āϤুāϞāϤে āĻĒাāϰāϞো āύা। āĻāĻ•্āώেāϤ্āϰে āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻŽাāύ āĻ•āϤ?


MATHEMATICAL PROBLEMS

() āĻāĻ•āϟি āĻŦāϏ্āϤুāϰ āωāĻĒāϰ 60 āύিāωāϟāύ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰা⧟ āĻŦāϏ্āϤুāϟিāϰ āϏāϰāĻŖ āĻšā§Ÿ 15 āĻŽিāϟাāϰ। āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻĒāϰিāĻŽাāĻŖ āĻ•āϤ?
() āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে 500 āĻŽিāϟাāϰ āϏāϰাāϤে 1000 āϜুāϞ āĻ•াāϰ্āϝ āĻ•āϰāϤে āĻšā§Ÿ। āĻāĻ•্āώেāϤ্āϰে āĻĒ্āϰāϝুāĻ•্āϤ āĻŦāϞেāϰ āĻŽাāύ āĻ•āϤ?
() āϚিāϤ্āϰāϟি āĻĨেāĻ•ে āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻĒāϰিāĻŽাāύ āύিāϰ্āϪ⧟ āĻ•āϰো।
() āĻ•োāύāĻ“ āĻŦāϏ্āϤুāĻ•ে 6 āĻŽিāϟাāϰ āϏāϰাāϤে āĻŦāϏ্āϤুāϟিāϰ āωāĻĒāϰ 3 āύিāωāϟāύ āĻŦāϞ āĻĒ্āϰ⧟োāĻ— āĻ•āϰা āĻšāϞ āĻāĻŦং āĻŦāϏ্āϤুāϟি āĻŦāϞেāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āϏাāĻĨে \(60^\circ \) āĻ•োāĻŖ āĻ•āϰে āϏāϰে āĻ—েāϞ। āĻ•ৃāϤāĻ•াāϰ্āϝেāϰ āĻĒāϰিāĻŽাāύ āĻ•āϤ āĻšāĻŦে? āϏāĻŽāϏ্āϝাāϟি āĻāĻ•āϟি āϚিāϤ্āϰেāϰ āĻŽাāϧ্āϝāĻŽে āĻĻেāĻ–াāĻ“।

Friday, October 23, 2015

Motion in One Dimension: Acceleration Due To Gravity

October 23, 2015 0 Comments

Fall of Body Under Gravity (Acceleration Due to Gravity)


āĻ…āĻ­িāĻ•āϰ্āώেāϰ āĻĒ্āϰāĻ­াāĻŦে āωāϞ্āϞāĻŽ্āĻŦ āĻ—āϤি


Gravity and Gravitation
āωāϞ্āϞāĻŽ্āĻŦāϰেāĻ–া⧟ āϊāϰ্āϧ্āĻŦাāĻ­িāĻŽুāĻ–ী āĻŦāϏ্āϤুāϰ āĻ—āϤি (A Body Projected Vertically Upwards):

āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে  \(u\) āĻŦেāĻ—ে āωāϞ্āϞāĻŽ্āĻŦāϰেāĻ–া⧟ āϊāϰ্āϧ্āĻŦাāĻ­িāĻŽুāĻ–ী āύিāĻ•্āώেāĻĒ āĻ•āϰা āĻšāϞে āĻāϟি āϝāϤāχ āωāĻĒāϰে āωāĻ āϤে āĻĨাāĻ•ে, āϤāϤāχ āχāĻšাāϰ āĻŦেāĻ— āĻ•্āϰāĻŽāĻļ āĻ•āĻŽāϤে āĻĨাāĻ•ে āĻāĻŦং āĻ…āĻŦāĻļেāώে āĻļূāύ্āϝ āĻšā§Ÿ, āϝāĻ–āύ āĻāϰ āωāϚ্āϚāϤা āϏāϰ্āĻŦাāϧিāĻ• āĻšā§Ÿ। āĻāϰ āĻĒāϰ āĻŦāϏ্āϤুāϟি āφāĻŦাāϰ āύীāϚেāϰ āĻĻিāĻ•ে āĻĒ⧜āϤে āĻĨাāĻ•ে āĻāĻŦং āĻāϰ āĻŦেāĻ— āĻ•্āϰāĻŽāĻļ āĻŦা⧜āϤে āĻĨাāĻ•ে।

āϏāϰ্āĻŦাāϧিāĻ• āωāϚ্āϚāϤা āĻāĻŦং āωāϤ্āĻĨাāύāĻ•াāϞ (Greatest Height & Time of Rise):

āϧāϰাāϝাāĻ•, āĻ•āĻŖাāϟিāϰ āϏāϰ্āĻŦাāϧিāĻ• āωāϚ্āϚāϤা \(H\) āĻāĻŦং āĻāχ āωāϚ্āϚāϤা⧟ āĻĒৌঁāĻ›াāϤে \(T\) āϏāĻŽā§Ÿ āϞাāĻ—ে।
āĻāĻ–াāύে āĻ•āĻŖাāϟিāϰ,
āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻŦেāĻ— \( = u\)
āĻ…āύ্āϤিāĻŽ āĻŦেāĻ— \( = 0\)
āĻ…āϤিāĻ•্āϰাāύ্āϤ āωāϚ্āϚāϤা \( = H\)
āĻāχ āωāϚ্āϚāϤা⧟ āĻĒৌঁāĻ›াāϤে āϏāĻŽā§Ÿ āϞাāĻ—ে \( = T\)
āϏুāϤāϰাং \(0 = u - gT\)
āĻŦা, \(T = \frac{u}{g}\) ... ... ... ... ... (i)

āĻāĻŦং \({\left( 0 \right)^2} = {u^2} - 2gH\)
āĻŦা, \(H = \frac{{{u^2}}}{{2g}}\) ... ... ... ... ... ... (ii)

āĻĒāϤāύāĻ•াāϞ āĻ“ āĻĒুāύāϰা⧟ āĻ­ূ-āĻĒৃāώ্āĻ ে āĻĒৌঁāĻ›াāύোāϰ āϏāĻŽā§Ÿ āĻŦেāĻ— (Time of Fall and Velocity on reaching the Ground):

āĻ•āĻŖাāϟি āϝāĻ–āύ āύীāϚেāϰ āĻĻিāĻ•ে āύাāĻŽāϤে āĻļুāϰু āĻ•āϰে, āĻ­ূ-āĻĒৃāώ্āĻ  āĻĨেāĻ•ে āϤāĻ–āύ āĻāϰ āωāϚ্āϚāϤা  \(\frac{{{u^2}}}{{2g}}\) āĻāĻŦং āĻāϰ āĻŦেāĻ— āĻļূāύ্āϝ āĻšā§Ÿ। āύিāĻŽ্āύāĻĻিāĻ•েāϰ āϏ্āĻĨাāύাāĻ™্āĻ•āĻ•ে āϧāύাāϤ্āĻŦāĻ• āϧāϰāϞে āĻāϰ āϤ্āĻŦāϰāĻŖ āĻšā§Ÿ \( + g\)। āϝāĻĻি āĻĒāϤāύāĻ•াāϞ \(T'\) āĻāĻŦং āĻĒুāύāϰা⧟ āĻ­ূ-āĻĒৃāώ্āĻ ে āĻāϏে āĻāϰ āĻŦেāĻ— \(v\) āĻšā§Ÿ, āϤāĻŦে āφāĻŽāϰা\(s = ut + \frac{1}{2}a{t^2}\) āĻ…āύুāϝা⧟ী āĻĒাāχ
\(H = 0 \times T' + \frac{1}{2} \times g \times {T'^2}\)
āĻŦা, \(H = \frac{1}{2}g{T'^2}\)
āĻŦা, \(\frac{{{u^2}}}{{2g}} = \frac{1}{2}g{T'^2}\) [\(H = \frac{{{u^2}}}{{2g}}\)]
āĻŦা, \({T'^2} = \frac{{{u^2}}}{{{g^2}}}\)
āĻŦা, \(T' = \frac{u}{g}\) ... ... ... ... ... ... ... .... .... (iii)
āϏুāϤāϰাং āϊāϰ্āϧ্āĻŦে āύিāĻ•্āώিāĻĒ্āϤ āĻŦāϏ্āϤুāϰ āĻ•্āώেāϤ্āϰে āωāϤ্āĻĨাāύāĻ•াāϞ  =  āĻĒāϤāύāĻ•াāϞ = \(\frac{u}{g}\)
āĻāĻŦং āĻļূāύ্āϝে āĻŽোāϟ āϚāϞāύāĻ•াāϞ =  \(\frac{u}{g} + \frac{u}{g} = \frac{{2u}}{g}\)

āĻāĻŦাāϰ \({v^2} = {u^2} - 2as\) āϏāĻŽীāĻ•āϰāĻŖ āĻ…āύুāϝা⧟ী āĻĒাāχ
\({v^2} = {\left( 0 \right)^2} + 2gH\)
āĻŦা, \({v^2} = 2g \times \frac{{{u^2}}}{{2g}}\) [\(H = \frac{{{u^2}}}{{2g}}\)]
āĻŦা, \({v^2} = {u^2}\)
āĻŦা, \(v = u\) ... ... ... ... ... ... ... ... (iv)
āϏুāϤāϰাং āϊāϰ্āϧ্āĻŦে āύিāĻ•্āώেāĻĒāĻ•াāϞে āĻ•োāύো āĻŦāϏ্āϤুāϰ āĻŦেāĻ— = āĻ­ূ-āĻĒৃāώ্āĻ ে āĻĒুāύāϰা⧟ āĻ…āĻŦাāϧ āĻĒāϤāύেāϰ āĻĢāϞে āĻĒৌঁāĻ›াāύোāϰ āϏāĻŽā§ŸāĻ•াāϞে āĻŦেāĻ—



āĻ•োāύো āύিāϰ্āĻĻিāώ্āϟ āωāϚ্āϚāϤা⧟ āĻĒৌঁāĻ›াāύোāϰ āϏāĻŽā§ŸāĻ•াāϞ (Time to Reach a given Height):

āϧāϰাāϝাāĻ•, āĻ•োāύো āĻŦāϏ্āϤুāĻ•ে āωāϞ্āϞāĻŽ্āĻŦāϰেāĻ–া⧟ āϊāϰ্āϧ্āĻŦে āύিāĻ•্āώেāĻĒ āĻ•āϰা āĻšāϞ āĻāĻŦং \(t\) āϏāĻŽā§Ÿ āĻĒāϰে āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻ…āĻŦāϏ্āĻĨাāύ āĻĨেāĻ•ে \(h\) āωāϚ্āϚāϤা⧟ āĻ•োāύো āĻŦিāύ্āĻĻুāϤে āφāϏিāϞ। āϊāϰ্āϧ্āĻŦাāĻ­িāĻŽুāĻ–āĻ•ে āϧāύাāϤ্āĻŦāĻ• āϧāϰিāϞে āĻŦāϏ্āϤুāϟিāϰ āϤ্āĻŦāϰāĻŖ āĻšā§Ÿ \( - g\)।
āĻāĻ–āύ \(s = ut + \frac{1}{2}a{t^2}\) āϏāĻŽীāĻ•āϰāĻŖ āĻ…āύুāϝা⧟ী āĻĒাāχ
\(h = ut - \frac{1}{2}g{t^2}\)
āĻŦা, \(\frac{1}{2}g{t^2} - ut + h = 0\)
āĻŦা, \(g{t^2} - 2ut + 2h = 0\)
\(\therefore t = \frac{{u \pm \sqrt {{u^2} - 2gh} }}{g} = \frac{u}{g} \pm \frac{{\sqrt {{u^2} - 2gh} }}{g}\)
āĻāĻ–াāύে \(t\) āĻāϰ āĻĻুāϟি āĻŽাāύ āĻĒাāĻ“ā§Ÿা āϝা⧟। āĻāĻ•āϟি \(\frac{u}{g} + \frac{{\sqrt {{u^2} - 2gh} }}{g}\) āĻāĻŦং āĻ…āύ্āϝ āĻāĻ•āϟি \(\frac{u}{g} - \frac{{\sqrt {{u^2} - 2gh} }}{g}\)। āĻ•াāϰāĻŖ āĻŦāϏ্āϤুāϟি \(h\) āωāϚ্āϚāϤা⧟ āĻĻুāχāĻŦাāϰ āφāϏে। āĻāĻ•āĻŦাāϰ āωāĻĒāϰেāϰ āĻĻিāĻ•ে āωāĻ āĻŦাāϰ āϏāĻŽā§Ÿ, āϝāĻ–āύ \(t\) āĻāϰ āĻŽাāύ \(\frac{u}{g}\) āĻ…āĻĒেāĻ•্āώা āĻ•āĻŽ āĻšā§Ÿ āĻāĻŦং āφāϰ āĻāĻ•āĻŦাāϰ āϏāϰ্āĻŦোāϚ্āϚ āωāϚ্āϚāϤা⧟ āĻĒৌঁāĻ›াāύোāϰ āĻĒāϰ āύীāϚেāϰ āĻĻিāĻ•ে āύাāĻŽাāϰ āϏāĻŽā§Ÿ, āϝāĻ–āύ \(t\) āĻāϰ āĻŽাāύ \(\frac{u}{g}\) āĻ…āĻĒেāĻ•্āώা āĻŦেāĻļী āĻšā§Ÿ।
āϏুāϤāϰাং āωāϞ্āϞāĻŽ্āĻŦāĻĒāĻĨেāϰ āĻ•োāύো āĻŦিāύ্āĻĻু āĻĨেāĻ•ে āϏāϰ্āĻŦাāϧিāĻ• āωāϚ্āϚāϤা⧟ āφāϏāϤে āϝে āϏāĻŽā§Ÿ āϞাāĻ—ে, āϤা āϏāϰ্āĻŦাāϧিāĻ• āωāϚ্āϚāϤা āĻĨেāĻ•ে āĻ“āχ āĻŦিāύ্āĻĻুāϤে āφāĻŦাāϰ āĻĢিāϰে āφāϏাāϰ āϏāĻŽā§Ÿেāϰ āϏāĻŽাāύ āĻšā§Ÿ।

āϝেāĻ•োāύো āωāϚ্āϚāϤা⧟ āĻŦেāĻ— (Velocity at any Height):

āϧāϰাāϝাāĻ•, \(u\) āĻŦেāĻ—ে āĻ•োāύāĻ“ āĻŦāϏ্āϤুāĻ•ে āωāϞ্āϞāĻŽ্āĻŦāϰেāĻ–া⧟ āωāĻĒāϰেāϰ āĻĻিāĻ•ে āύিāĻ•্āώেāĻĒ āĻ•āϰা āĻšāϞ। āϧāϰাāϝাāĻ• āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻ…āĻŦāϏ্āĻĨাāύ āĻĨেāĻ•ে āĻŦāϏ্āϤুāϟি āϝāĻ–āύ \(h\) āωāϚ্āϚāϤা⧟ āϤāĻ–āύ āωāĻšাāϰ āĻŦেāĻ— \(v\)। āωāĻĒāϰেāϰ āĻĻিāĻ•āĻ•ে āϏ্āĻĨাāύাāĻ™্āĻ•েāϰ āϧāύাāϤ্āĻŦāĻ• āϧāϰা āĻšāϞে āφāĻŽāϰা āĻĒাāχ
\({v^2} = {u^2} - 2gh\)
āĻŦা,  \(v =  \pm \sqrt {{u^2} - 2gh} \)
āĻāĻ–াāύে āϧāύাāϤ্āĻŦāĻ• āĻŽাāύāϟি āωāĻĒāϰেāϰ āĻĻিāĻ•ে āωāĻ āĻŦাāϰ āϏāĻŽā§Ÿ āĻŦেāĻ—āĻ•ে āύিāϰ্āĻĻেāĻļ āĻ•āϰে āĻāĻŦং āĻ‹āύাāϤ্āĻŦāĻ• āĻŽাāύāϟি āύীāϚেāϰ āĻĻিāĻ•ে āύাāĻŽাāϰ āϏāĻŽā§Ÿ āĻ“āχ āĻŦিāύ্āĻĻুāϤে āĻŦāϏ্āϤুāϟিāϰ āĻŦেāĻ—āĻ•ে āύিāϰ্āĻĻেāĻļ āĻ•āϰে। āĻāĻ–াāύে āĻĻেāĻ–া āϝা⧟ āĻŦāϏ্āϤুāϟিāϰ āĻĒāĻĨেāϰ āĻ•োāύো āĻŦিāύ্āĻĻুāϤে āωāĻ āĻŦাāϰ āϏāĻŽā§Ÿ āĻŦা āύাāĻŽাāϰ āϏāĻŽā§Ÿ āĻŦেāĻ— āϏāϰ্āĻŦāĻĻা āϏāĻŽাāύ āĻšā§Ÿ।
āĻ•োāύāĻ“ āύিāϰ্āĻĻিāώ্āϟ āϏেāĻ•েāύ্āĻĄে āĻĒāϤāύেāϰ āĻĻূāϰāϤ্āĻŦ (Distance fallen through in any particular second):

āϧāϰাāϝাāĻ• āĻāĻ•āϟি āĻ•āĻŖা āωāϚ্āϚāϤāĻŽ āĻŦিāύ্āĻĻু āĻĨেāĻ•ে āωāϞ্āϞāĻŽ্āĻŦāĻ­াāĻŦে āύিāĻŽ্āύāϤāĻŽ āĻŦিāύ্āĻĻু āĻĒāϰ্āϝāύ্āϤ āĻĒ⧜āϤে āĻŽোāϟ \(t\) āϏেāĻ•েāύ্āĻĄ āϏāĻŽā§Ÿ āϞাāĻ—ে। āϧāϰাāϝাāĻ• \(t\) āϤāĻŽ āϏেāĻ•েāύ্āĻĄে \({s_t}\) āĻĒāϰিāĻŽাāύ āĻĻূāϰāϤ্āĻŦ āĻ…āϤিāĻ•্āϰāĻŽ āĻ•āϰে। 
āĻāĻ–āύ \(t\) āϏেāĻ•েāύ্āĻĄে āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ  \( = ut - \frac{1}{2}g{t^2}\)
āĻāĻŦং \(\left( {t - 1} \right)\) āϏেāĻ•েāύ্āĻĄে āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ \( = u\left( {t - 1} \right) - \frac{1}{2}g{\left( {t - 1} \right)^2}\)
\(\therefore t\) āϤāĻŽ āϏেāĻ•েāύ্āĻĄে āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ \({s_t} = \frac{1}{2}g{t^2} - \frac{1}{2}g{\left( {t - 1} \right)^2} = \frac{1}{2}g\left( {2t - 1} \right)\)
āĻļুāϧুāĻŽাāϤ্āϰ āĻ…āĻ­িāĻ•āϰ্āώেāϰ āĻĒ্āϰāĻ­াāĻŦে āωāϞ্āϞāĻŽ্āĻŦāĻ—āϤিāϰ āĻ•্āώেāϤ্āϰে āĻŦিāĻ­িāύ্āύ āϞেāĻ–āϚিāϤ্āϰ:

āĻŦāϏ্āϤুāϟিāĻ•ে āĻ­ূāĻŽি āĻĨেāĻ•ে āĻ•োāύো āωāϚ্āϚāϤা āϝেāĻŽāύ, āĻŽিāύাāϰ, āĻŦা⧜ীāϰ āĻ›াāĻĻ āχāϤ্āϝাāĻĻি āĻĨেāĻ•ে āĻ›ে⧜ে āĻĻেāĻ“ā§Ÿা āĻšāϞে āϤাāϰ āĻ…āϤিāĻ•্āϰাāύ্āϤ āωāϚ্āϚāϤা, āĻ—āϤিāĻŦেāĻ— āĻāĻŦং āϤ্āĻŦāϰāĻŖেāϰ āϏāĻ™্āĻ—ে āϏāĻŽā§Ÿেāϰ āϞেāĻ–āϚিāϤ্āϰ (Body is dropped from some Height)

āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ āĻ“ āϏāĻŽā§Ÿেāϰ āϞেāĻ–āϚিāϤ্āϰ:

āĻ—āϤিāĻŦেāĻ— āĻ“ āϏāĻŽā§Ÿেāϰ āϞেāĻ–āϚিāϤ্āϰ:

āϤ্āĻŦāϰāĻŖ āĻ“ āϏāĻŽā§Ÿেāϰ āϞেāĻ–āϚিāϤ্āϰ:
 
āĻŦāϏ্āϤুāϟিāĻ•ে āĻ­ূāĻŽি āĻĨেāĻ•ে āϊāϰ্āϧ্āĻŦে āĻ•োāύো āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻŦেāĻ— āύি⧟ে āύিāĻ•্āώেāĻĒ āĻ•āϰāϞে āϤাāϰ āĻ…āϤিāĻ•্āϰাāύ্āϤ āωāϚ্āϚāϤা, āĻ—āϤিāĻŦেāĻ— āĻāĻŦং āϤ্āĻŦāϰāĻŖেāϰ āϏāĻ™্āĻ—ে āϏāĻŽā§Ÿেāϰ āϞেāĻ–āϚিāϤ্āϰ (Body is Projected vertically upward):

āĻ…āϤিāĻ•্āϰাāύ্āϤ āĻĻূāϰāϤ্āĻŦ āĻ“ āϏāĻŽā§Ÿেāϰ āϞেāĻ–āϚিāϤ্āϰ:
āĻ—āϤিāĻŦেāĻ— āĻ“ āϏāĻŽā§Ÿেāϰ āϞেāĻ–āϚিāϤ্āϰ:






āϤ্āĻŦāϰāĻŖ āĻ“ āϏāĻŽā§Ÿেāϰ āϞেāĻ–āϚিāϤ্āϰ:


āĻ•ā§ŸেāĻ•āϟি āĻŽāύে āϰাāĻ–াāϰ āĻŦিāώ⧟:
(1) āĻļুāϧুāĻŽাāϤ্āϰ āĻ…āĻ­িāĻ•āϰ্āώেāϰ āĻĒ্āϰāĻ­াāĻŦে āĻ•োāύো āĻŦāϏ্āϤু āĻ—āϤিāĻļীāϞ āĻšāϞে āϤাāϰ āĻ­āϰ, āϤ্āĻŦāϰāĻŖ, āϝাāύ্āϤ্āϰিāĻ• āĻļāĻ•্āϤিāϰ āĻ•োāύāĻ“ āĻĒāϰিāĻŦāϰ্āϤāύ āϘāϟে āύা āĻ•িāύ্āϤু āĻŦāϏ্āϤুāϟিāϰ āĻ—āϤিāϰ āĻĻ্āϰুāϤি, āĻ—āϤিāĻŦেāĻ—, āĻ­āϰāĻŦেāĻ—, āĻ—āϤিāĻļāĻ•্āϤি, āϏ্āĻĨিāϤিāĻļāĻ•্āϤি āĻĒāϰিāĻŦāϰ্āϤিāϤ āĻšā§Ÿ।
(2) āĻāĻ–াāύে āĻ—āϤিāϰ āϏāĻŽীāĻ•āϰāĻŖāĻ—ুāϞি āϞāĻ•্āώ্āϝ āĻ•āϰāϞে āĻĻেāĻ–া āϝা⧟ āϏāĻŦāĻ—ুāϞিāϤেāχ āĻŦāϏ্āϤুāϟিāϰ āĻ­āϰ āύিāϰāĻĒেāĻ•্āώ। āϤাāχ āϝেāĻ•োāύāĻ“ āĻšাāϞāĻ•া āĻŦāϏ্āϤু āĻŦা āĻ­াāϰী āĻŦāϏ্āϤুāĻ•ে āĻ•োāύāĻ“ āĻāĻ•āϟি āωāϚ্āϚāϤা āĻĨেāĻ•ে āĻāĻ•āϏাāĻĨে āĻ›া⧜া āĻšāϞে āϤাāϰা āĻāĻ•āχ āϏāĻŽā§Ÿে āĻāĻŦং āĻāĻ•āχ āĻ…āύ্āϤিāĻŽ āĻŦেāĻ— āύি⧟ে āĻ­ূāĻŽিāϤে āĻĒāϤিāϤ āĻšāĻŦে। āĻāĻ•্āώেāϤ্āϰে āĻĒāϤāύāĻ•াāϞ \(t = \sqrt {\frac{{2h}}{g}} \) āĻāĻŦং āĻ­ূāĻŽি āϏ্āĻĒāϰ্āĻļ āĻ•āϰাāϰ āĻ িāĻ• āĻĒূāϰ্āĻŦ āĻŽুāĻšূāϰ্āϤে āĻŦেāĻ— \(v = \sqrt {2gh} \)
(3) āĻļুāϧুāĻŽাāϤ্āϰ āĻ…āĻ­িāĻ•āϰ্āώ āĻŦāϞেāϰ āĻĒ্āϰāĻ­াāĻŦে āωāϞ্āϞāĻŽ্āĻŦāĻ­াāĻŦে āĻ—āϤিāĻļীāϞ āĻŦāϏ্āϤুāϰ āĻ•্āώেāϤ্āϰে āϝāĻ–āύ āĻŦāϏ্āϤুāϟিāĻ•ে āωāĻĒāϰেāϰ āĻĻিāĻ•ে āĻāĻ•āϟি āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻŦেāĻ— āύি⧟ে āĻ›োঁ⧜া āĻšā§Ÿ āϤāĻ–āύ āĻ•োāύো āĻāĻ•āϟি āύিāϰ্āĻĻিāώ্āϟ āωāϚ্āϚāϤা āφāϰোāĻšāĻŖ āĻ•āϰāϤে āϝে āϏāĻŽā§Ÿ āϞাāĻ—ে, āϤা āĻŦāϏ্āϤুāϟিāϰ āĻ…āĻŦāϤāϰāĻŖāĻ•াāϞেāϰ āϏāĻŽাāύ āĻšā§Ÿ। āĻ…āϰ্āĻĨাā§Ž āωāϤ্āĻĨাāύāĻ•াāϞ (\({t_1}\)) = āĻĒāϤāύāĻ•াāϞ (\({t_2}\)) = \(\frac{u}{g}\)
(4) āĻļুāϧুāĻŽাāϤ্āϰ āĻ…āĻ­িāĻ•āϰ্āώ āĻŦāϞেāϰ āĻĒ্āϰāĻ­াāĻŦে āωāϞ্āϞāĻŽ্āĻŦāĻ­াāĻŦে āĻ—āϤিāĻļীāϞ āĻŦāϏ্āϤুāϰ āĻ•্āώেāϤ্āϰে āϝāĻ–āύ āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āωāĻĒāϰেāϰ āĻĻিāĻ•ে āĻ›োঁ⧜া āĻšā§Ÿ āϤāĻ–āύ āϤাāϰ āύিāĻ•্āώেāĻĒ āĻŦেāĻ— (\(u\)) āĻāĻŦং āĻŦāϏ্āϤুāϟি āϝāĻ–āύ āφāĻŦাāϰ āϏেāĻ–াāύে āĻ­ূāĻŽিāϤে āĻāϏে āĻĒৌঁāĻ›া⧟ āϤাāϰ āĻ িāĻ• āĻĒূāϰ্āĻŦ āĻŽুāĻšূāϰ্āϤেāϰ āĻŦেāĻ—েāϰ āϏāĻŽাāύ āĻšā§Ÿ।
(5) \(h\) āωāϚ্āϚāϤা āĻĨেāĻ•ে āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āĻ›া⧜া āĻšāϞে āĻŦāϏ্āϤুāϟি \(t\) āϏāĻŽā§Ÿ āĻĒāϰ āĻ­ূāĻŽিāϤে āĻĒৌঁāĻ›া⧟। āĻ“āχ āĻāĻ•āχ āωāϚ্āϚāϤা āĻĨেāĻ•ে āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āωāĻĒāϰেāϰ āĻĻিāĻ•ে āĻāĻ•āϟি āĻŦেāĻ— \(v\) āύি⧟ে āύিāĻ•্āώেāĻĒ āĻ•āϰা āĻšāϞে āĻŦāϏ্āϤুāϟি \({t_1}\) āϏāĻŽā§Ÿ āĻĒāϰ āĻ­ূāĻŽিāϤে āĻĒৌঁāĻ›া⧟। āφāĻŦাāϰ āĻŦāϏ্āϤুāϟিāĻ•ে āĻāĻ•āχ āωāϚ্āϚāϤা āĻĨেāĻ•ে āĻāĻ•āχ āĻŦেāĻ— āύি⧟ে āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āύিāĻ•্āώেāĻĒ āĻ•āϰা āĻšāϞে āĻŦāϏ্āϤুāϟি \({t_2}\) āϏāĻŽā§Ÿ āĻĒāϰ āĻ­ূāĻŽিāϤে āĻĒৌঁāĻ›া⧟। āϤাāĻšāϞে āϏāϰ্āĻŦāĻĻা \(t = \sqrt {{t_1}{t_2}} \) āĻšāĻŦে।

(6) āĻ•োāύāĻ“ āĻŦāϏ্āϤুāĻ•ে āωāĻĒāϰেāϰ āĻĻিāĻ•ে āύিāĻ•্āώেāĻĒ āĻ•āϰা āĻšāϞে āĻŦāϏ্āϤুāϟিāϰ āωāĻĒāϰ āĻ…āĻ­িāĻ•āϰ্āώāϜ āϤ্āĻŦāϰāĻŖ āϏāϰ্āĻŦāĻĻা āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻ•্āϰি⧟া āĻ•āϰে āĻāĻŦং āĻŦা⧟ুāϰ āĻŦাāϧা āϜāύিāϤ āĻŦāϞেāϰ āĻ•্āϰি⧟াāϰ āϤ্āĻŦāϰāĻŖ (\(a\)) āĻŦāϏ্āϤুāϟিāϰ āĻ—āϤিāϰ āĻ…āĻ­িāĻŽুāĻ–েāϰ āĻŦিāĻĒāϰীāϤে āĻ…āϰ্āĻĨাā§Ž āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻ•্āϰি⧟াāĻļীāϞ āĻšā§Ÿ āϝা āĻŦāϏ্āϤুāϟিāĻ•ে āωāĻĒāϰে āĻĻিāĻ•ে āωāĻ āϤে āĻŦাāϧা āĻĻে⧟।
āφāĻŦাāϰ āĻŦāϏ্āϤুāϟি āϝāĻ–āύ āϏāϰ্āĻŦোāϚ্āϚ āĻ…āĻŦāϏ্āĻĨাāύে āĻ“āĻ াāϰ āĻĒāϰ āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻĒ⧜āϤে āĻĨাāĻ•ে āϤāĻ–āύ āĻ…āĻ­িāĻ•āϰ্āώ āϤ্āĻŦāϰāĻŖ āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻāĻŦং āĻŦাāϧাāϰ āĻŦাāϧা āϜāύিāϤ āĻŦāϞেāϰ āϤ্āĻŦāϰāĻŖ (\(a\)) āϤāĻ–āύ āϊāϰ্āϧ্āĻŦ āĻ…āĻ­িāĻŽুāĻ–ে āĻ•্āϰি⧟াāĻļীāϞ āĻšā§Ÿ। āϤাāχ āĻāĻ•্āώেāϤ্āϰে āωāϤ্āĻĨাāύāĻ•াāϞ (\({t_1}\)) āϏāϰ্āĻŦāĻĻা āĻĒāϤāύāĻ•াāϞ (\({t_2}\)) āĻ…āĻĒেāĻ•্āώা āĻ•āĻŽ āĻšā§Ÿ āĻ…āϰ্āĻĨাā§Ž \({t_1} < {t_2}\)
āĻŦāϏ্āϤুāϟিāϰ āύিāĻ•্āώেāĻĒ āĻŦেāĻ— (u) āĻšāϞে āωāϤ্āĻĨাāύāĻ•াāϞ (\({t_1}\)) āĻšā§Ÿ  \({t_1} = \frac{u}{{\left( {g + a} \right)}}\) āĻāĻŦং āĻ…āϤিāĻ•্āϰাāύ্āϤ āωāϚ্āϚāϤা (\(h\)) = \(\frac{{{u^2}}}{{2\left( {g + a} \right)}}\)
āĻāĻŦং āĻĒāϤāύেāϰ āϏāĻŽā§Ÿ \(H = \frac{1}{2}\left( {g - a} \right)t_2^2\)
āϏুāϤāϰাং \(\frac{{{u^2}}}{{2\left( {g + a} \right)}} = \frac{1}{2}\left( {g - a} \right)t_2^2\)
āĻŦা, \({t_2} = \frac{u}{{\sqrt {\left( {g + a} \right)\left( {g - a} \right)} }}\)

(7) āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āĻ•োāύāĻ“ āωāϚ্āϚāϤা āĻĨেāĻ•ে āĻ›া⧜া āĻšāϞে āĻĒ্āϰāϤি āĻŽিāϟাāϰ āωāϚ্āϚāϤা āĻ…āĻŦāϤāϰāĻŖāĻ•াāϞে āϏāĻŽā§Ÿ āύে⧟ āϝāĻĨাāĻ•্āϰāĻŽে \(\sqrt 1 ,\left( {\sqrt 2  - \sqrt 1 } \right),\left( {\sqrt 3  - \sqrt 2 } \right),\left( {\sqrt 4  - \sqrt 3 } \right),......\)

Problem Solving Techniques of Free Fall Under The Gravity:

 When a body falls under gravity (due to pull of Earth), the Acceleration (a) in the different Kinematics Equation is replaced by "g". Take downward direction as positive and Upward direction to be negative. However, remember following cases for assigning '+' and '-' to "g", "u" and "s or h".

Case:1
āϝāĻ–āύ āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āĻ­ূāĻŽি āĻĨেāĻ•ে āύিāĻ•্āώেāĻĒ āĻ•āϰা āĻšā§Ÿ (When a body is thrown up from the ground):

Here u and h taken positive and "g" is taken as negative
Here the Kinematics Equations are:
(1) \(v = u - gt\)
(2)  \(h = ut - \frac{1}{2}g{t^2}\)
(3)  \({v^2} = {u^2} - 2gh\)
(4) \({h_n} = u - \frac{1}{2}g\left( {2n - 1} \right)\)
āĻŦāϏ্āϤুāϟিāĻ•ে āϝেāĻ–াāύ āĻĨেāĻ•ে āĻ›োঁ⧜া āĻšā§Ÿ āϏেāĻ–াāύে āĻŽুāϞāĻŦিāύ্āĻĻু āϧāϰে āĻŦāϏ্āϤুāϟিāϰ āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻŦেāĻ— (u) āĻāĻŦং āĻ…āϤিāĻ•্āϰাāύ্āϤ āωāϚ্āϚāϤা (h) āĻ•ে āϧāύাāϤ্āĻŦāĻ• āĻāĻŦং āĻ…āĻ­িāĻ•āϰ্āώāϜ āϤ্āĻŦāϰāĻŖ (g) āĻ•ে āύিāĻŽ্āύāĻĻিāĻ•ে āĻ•্āϰি⧟াāĻļীāϞ āĻšāĻ“ā§Ÿা⧟ āĻāĻ•ে āĻ‹āύাāϤ্āĻŦāĻ• āϧāϰা āĻšā§Ÿ। āĻ…āϰ্āĻĨাā§Ž
āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻŦেāĻ— (u): āϧāύাāϤ্āĻŦāĻ•
āĻ…āϤিāĻ•্āϰাāύ্āϤ āωāϚ্āϚāϤা (h): āϧāύাāϤ্āĻŦāĻ•
āĻ…āĻ­িāĻ•āϰ্āώāϜ āϤ্āĻŦāϰāĻŖ (g): āĻ‹āύাāϤ্āĻŦāĻ•
āϤাāχ āĻāĻ–াāύে āĻ—āϤিāϰ āϏāĻŽীāĻ•āϰāĻŖāĻ—ুāϞি āĻšā§Ÿ
 (1) \(v = u - gt\)
(2)  \(h = ut - \frac{1}{2}g{t^2}\)
(3)  \({v^2} = {u^2} - 2gh\)
(4) \({h_n} = u - \frac{1}{2}g\left( {2n - 1} \right)\)

Case: 2

When a body is thrown up from an elevation or a height (like roof of a building) or when a body is released from a rising balloon or a helicopter (with uniform speed), when it is at a height "h" above the ground and the body finally hits the ground.
Here "u" is taken negative.
"g" and "h" are taken positive.
Here the kinematics equations are
(a) \(v =  - u + gt\)
(b)  \(h =  - ut + \frac{1}{2}g{t^2}\)
(c)  \({v^2} = {u^2} + 2gh\)
(d) \({h_n} =  - u + \frac{1}{2}g\left( {2n - 1} \right)\)
āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āĻ•োāύো āωāϚ্āϚāϤা "h" āĻĨেāĻ•ে āϊāϰ্āĻĻ্āϧে āĻ›োঁ⧜া āĻšāϞ āĻāĻŦং āĻ…āĻŦāĻļেāώে āĻŦāϏ্āϤুāϟি  āĻ­ূāĻŽিāϤে āĻĒāϤিāϤ āĻšā§Ÿ (When a body is thrown up from an elevation.)
āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে "h" āωāϚ্āϚāϤাāϰ āĻ•োāύো āĻŦা⧜ীāϰ āĻ›াāĻĻ āĻĨেāĻ•ে āϊāϰ্āĻĻ্āϧে āĻ›োঁ⧜া āĻšāϞ āĻāĻŦং āĻ…āĻŦāĻļেāώে āĻŦāϏ্āϤুāϟি āĻ­ূāĻŽিāϤে āĻšā§Ÿ (When a body is thrown up from a height, roof, buildings):
āϏāĻŽāĻŦেāĻ—ে āϊāϰ্āĻĻ্āϧে āĻ—āϤিāĻļীāϞ āĻāĻ•āϟি āĻŦেāϞুāύ āĻĨেāĻ•ে āĻ•োāύো āĻŦāϏ্āϤুāĻ•ে āĻ›া⧜া āĻšāϞ āϝāĻ–āύ āĻŦেāϞুāύāϟি āĻ­ূāĻŽি āĻĨেāĻ•ে 'h' āωāϚ্āϚāϤা⧟ āĻ…āĻŦāϏ্āĻĨিāϤ āĻĨাāĻ•ে āĻāĻŦং āĻŦāϏ্āϤুāϟি āĻ­ূāĻŽিāϤে āĻĒāϤিāϤ āĻšā§Ÿ (When a body is released from a rising balloon with uniform speed):
āϏāĻŽāĻŦেāĻ—ে āϊāϰ্āĻĻ্āϧে āĻ—āϤিāĻļীāϞ āĻāĻ•āϟি āĻšেāϞিāĻ•āĻĒ্āϟাāϰ āĻĨেāĻ•ে āĻ•োāύো āĻŦāϏ্āϤুāĻ•ে āĻ›া⧜া āĻšāϞ āϝāĻ–āύ āĻšেāϞিāĻĒāĻ•্āϟাāϰāϟি āĻ­ূāĻŽি āĻĨেāĻ•ে "h" āωāϚ্āϚāϤা⧟ āĻ…āĻŦāϏ্āĻĨিāϤ āĻĨাāĻ•ে āĻāĻŦং āĻ…āĻŦāĻļেāώে āĻŦāϏ্āϤুāϟি āĻ­ূāĻŽিāϤে āĻĒāϤিāϤ āĻšā§Ÿ (When a body is release from a helicopter with uniform speed):
āĻāĻ–াāύে
āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻŦেāĻ— (u): āĻ‹āύাāϤ্āĻŦāĻ•
āĻ…āϤিāĻ•্āϰাāύ্āϤ āωāϚ্āϚāϤা (h): āϧāύাāϤ্āĻŦāĻ•
āĻ…āĻ­িāĻ•āϰ্āώāϜ āϤ্āĻŦāϰāĻŖ (g): āϧāύাāϤ্āĻŦāĻ•
āϤাāχ āĻāĻ–াāύে āĻ—āϤিāϰ āϏāĻŽীāĻ•āϰāĻŖ āĻ—ুāϞি āĻšāϞ:
(a) \(v =  - u + gt\)
(b)  \(h =  - ut + \frac{1}{2}g{t^2}\)
(c)  \({v^2} = {u^2} + 2gh\)
(d)  \({h_n} =  - u + \frac{1}{2}g\left( {2n - 1} \right)\)

Case: 3

When a body is thrown down from an elevation or height "h", so that it hits the ground. Here "u", "g" and "h" are taken all positive
The kinematics equation are
(a) \(v = u + gt\)
(b) \(h = ut + \frac{1}{2}g{t^2}\)
(c) \({h_n} = \frac{1}{2}g\left( {2n - 1} \right)\)
(d) \({h_n} = u + \frac{1}{2}g\left( {2n - 1} \right)\)

āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āĻ•োāύো āωāϚ্āϚāϤা "h" āĻĨেāĻ•ে āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻ›োঁ⧜া āĻšāϞ āĻāĻŦং āĻ…āĻŦāĻļেāώে āĻŦāϏ্āϤুāϟি āĻ­ূāĻŽিāϤে āĻĒāϤিāϤ āĻšā§Ÿ (When a body is thrown down from an elevation):
āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে "h" āωāϚ্āϚāϤাāϰ āĻ•োāύো āĻŦা⧜ীāϰ āĻ›াāĻĻ āĻĨেāĻ•ে āύিāĻŽ্āύ āĻ…āĻ­িāĻŽুāĻ–ে āĻ›োঁ⧜া āĻšāϞ āĻāĻŦং āĻŦāϏ্āϤুāϟি āĻ…āĻŦāĻļেāώে āĻ­ূāĻŽিāϤে āĻĒāϤিāϤ āĻšā§Ÿ (When a body is thrown down from a height, roof or buildings):
āĻāĻ–াāύে āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻŦেāĻ— (u): āϧāύাāϤ্āĻŦāĻ•
āĻ…āϤিāĻ•্āϰাāύ্āϤ āωāϚ্āϚāϤা (h): āϧāύাāϤ্āĻŦāĻ•
āĻ…āĻ­িāĻ•āϰ্āώāϜ āϤ্āĻŦāϰāĻŖ (g): āϧāύাāϤ্āĻŦāĻ•
āϤাāχ āĻāĻ–াāύে āĻ—āϤিāϰ āϏāĻŽীāĻ•āϰāĻŖāĻ—ুāϞি āĻšāϞ:
(a)  \(v = u + gt\)
(b)  \(h = ut + \frac{1}{2}g{t^2}\)
(c)  \({v^2} = {u^2} + 2gh\)
(d) \({h_n} = u + \frac{1}{2}g\left( {2n - 1} \right)\)

 Case: 4

When a body is just released from a height "h" above the ground. Then here "u"=0 and "g" and "h" are taken positive.
The kinematics equations are
(a) \(v = gt\)
(b) \(h = \frac{1}{2}g{t^2}\)
(c) \({v^2} = 2gh\)
(d) \({h_n} = \frac{1}{2}g\left( {2n - 1} \right)\)

āĻāĻ•āϟি āĻŦāϏ্āϤুāĻ•ে āĻ­ূāĻŽি āĻĨেāĻ•ে āĻ•োāύো āωāϚ্āϚāϤা 'h' āϝেāĻŽāύ āĻŦা⧜ীāϰ āĻ›াāĻĻ, āĻŽিāύাāϰ āχāϤ্āϝাāĻĻি āĻĨেāĻ•ে āĻ›া⧜া āĻšāϞে
āĻĒ্āϰাāĻĨāĻŽিāĻ• āĻŦেāĻ— (u):=0
āĻ…āϤিāĻ•্āϰাāύ্āϤ āωāϚ্āϚāϤা (h): āϧāύাāϤ্āĻŦāĻ•
āĻ…āĻ­িāĻ•āϰ্āώāϜ āϤ্āĻŦāϰāĻŖ (g): āϧāύাāϤ্āĻŦāĻ•
āϤাāχ āĻāĻ–াāύে āĻ—āϤিāϰ āϏāĻŽীāĻ•āϰāĻŖāĻ—ুāϞি āĻšāϞ
(a)   \(v = gt\)
(b) \(h = \frac{1}{2}g{t^2}\)
(c)  \({v^2} = 2gh\)
(d)  \({h_n} = \frac{1}{2}g\left( {2n - 1} \right)\)