Work, Power & Energy Class: IX Standard (CBSE & WBBSE Board)
Sanya
October 26, 2015
0 Comments
In our day-to-day life, we talk about the term work, power and energy. Out of these energy is most important concept, since all living things need energy to maintain their life. The concept of work is closely associated the with the concept of energy. When we walk or run, we use the energy that we get from the food we eat. The concept of power is also closely associated with that of work. In our daily life, any physical or mental activity is termed as work done. āĻĻৈāύāύ্āĻĻিāύ āĻীāĻŦāύে āĻāĻŽāϰা āĻাāϰ্āϝ, āĻ্āώāĻŽāϤা āĻ āĻļāĻ্āϤি āĻāĻ āĻāĻĨাāĻুāϞো āĻŦিāĻিāύ্āύāĻাāĻŦে āĻŦ্āϝāĻŦāĻšাāϰ āĻāϰি। āĻĻৌā§াāύো, āĻšাঁāĻা, āϏাঁāϤাāϰāĻাāĻা, āĻĒā§া, āϞেāĻা, āĻোāύāĻ āĻŦāϏ্āϤুāĻে āĻোঁā§া, āĻŽাāĻি āĻোāĻĒাāύো, āϏাāĻāĻেāϞ āĻাāϞাāύো āĻāĻুāϞি āϏāĻŦ āĻāĻŽাāĻĻেāϰ āĻাāĻেāϰ āĻŽāϧ্āϝে āĻĒā§ে। āĻāĻ āĻাāĻ āĻāϰাāϰ āϏাāĻĨে āĻļāĻ্āϤিāϰ āĻāĻāĻা āϧাāϰāĻŖা āĻĒাāĻ। āϝেāĻŽāύ, āĻāĻŽāϰা āĻāĻāύ āĻাāĻ āĻāϰāĻি āĻŦা āĻāĻŽাāĻĻেāϰ āĻāĻ āĻাāĻāĻিāϰ āĻāύ্āϝ āĻļāĻ্āϤিāϰ āĻĒ্āϰā§োāĻāύ। āϏাāϧাāϰāĻŖāĻাāĻŦে āĻাāĻ āĻāϰা āĻŦāϞāϤে āĻিāĻু āĻāϰা āĻŦোāĻাā§ āĻāĻŦং āĻāĻāϏāĻŦ āĻাāĻ āĻāϰাāϰ āĻāύ্āϝ āĻāĻŽাāĻĻেāϰ āĻļāϰীāϰে āĻļāĻ্āϤিāϰ āĻĒ্āϰā§োāĻāύ āϝা āĻāĻŽāϰা āĻাāĻĻ্āϝেāϰ āĻŽাāϧ্āϝāĻŽে āĻ্āϰāĻšāĻŖ āĻāϰে āĻĨাāĻি। āĻāĻŦাāϰ āύিāϰ্āĻীāĻŦ āĻŦāϏ্āϤুāϰ āĻ্āώেāϤ্āϰেāĻ āϝেāĻŽāύ, āϰেāĻĄিāĻ, āĻেāϞিāĻিāĻļāύ, āĻŦৈāĻĻ্āϝুāϤিāĻ āĻŦাāϤি, āĻŽাāĻāĻ্āϰোāĻāĻেāύ, āĻŦৈāĻĻ্āϝুāϤিāĻ āĻĒাāĻা, āĻāĻŽ্āĻĒিāĻāĻাāϰ āĻāϤ্āϝাāĻĻি āϝāύ্āϤ্āϰāĻ āĻাāĻ āĻāϰāϤে āĻĒাāϰে। āĻāĻĻেāϰ āĻাāĻেāϰ āĻāύ্āϝ āĻŦৈāĻĻ্āϝুāϤিāĻ āĻļāĻ্āϤি āϏāϰāĻŦāϰাāĻš āĻāϰāϤে āĻšā§। āĻāĻ āĻাāϰ্āϝ āĻ āĻļāĻ্āϤিāϰ āϏāĻ্āĻে āĻ্āώāĻŽāϤাāϰāĻ āĻāĻāĻি āϏāĻŽ্āĻĒāϰ্āĻ āĻুঁāĻে āĻĒাāĻ। āĻāĻŽāϰা āϏাāϰাāĻĻিāύ āĻাāĻ āĻāϰাāϰ āĻĒāϰ āĻ্āώāĻŽāϤা āĻšাāϰিā§ে āĻĢেāϞি āϝে āĻাāϰāύে āĻāĻŽাāĻĻেāϰ āĻļāϰীāϰে āĻ āĻŽāύে āĻ্āϞাāύ্āϤি āĻ āĻ
āĻŦāϏাāĻĻ āĻāϏে।
-------------------- O --------------------
However in physics, the meaning of work is entirely different. Here we shall discuss details about these terms. āĻিāύ্āϤু āĻĒāĻĻাāϰ্āĻĨāĻŦিāĻ্āĻাāύেāϰ āĻাāώাā§ āĻāĻ āĻাāϰ্āϝ, āĻ্āώāĻŽāϤা āĻŦা āĻļāĻ্āϤিāϰ āϧাāϰāĻŖা āĻāĻāĻু āĻ
āύ্āϝāϰāĻāĻŽ।
Concept of Work: Work is said to be done by a force on a body if the force applied causes a displacement in the body or object. In other words the condition which must be satisfied for the work to done are (1) A force must act on the body (2) The body must be displaced from one position to another position.
āĻĒāĻĻাāϰ্āĻĨāĻŦিāĻ্āĻাāύেāϰ āĻাāώাā§ āĻাāϰ্āϝেāϰ āϧাāϰāĻŖা: āϝāĻāύ āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰা āĻšā§ āĻāĻŦং āĻāĻ āĻŦāϞেāϰ āĻ্āϰিā§াā§ āϝāĻĻি āĻŦāϏ্āϤুāĻি āĻāϤিāĻļীāϞ āĻšā§ āϤāĻāύ āĻāĻ āĻŦāϏ্āϤুāĻিāϰ āĻাāϰ্āϝ āĻāϰা āĻšā§। āĻ
āϰ্āĻĨাā§ āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰāϞে āϝāĻĻি āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ āĻāĻে āϤāĻāύ āĻŦāϞা āĻšā§ āĻŦāϏ্āϤুāĻি āĻাāϰ্āϝ āĻāϰেāĻে। āĻোāύāĻ āĻাāϰী āĻŦāϏ্āϤুāĻে āĻ
āύেāĻ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰাāϰ āĻĒāϰāĻ āϝāĻĻি āϤাāĻে āϏāϰাāύো āύা āϝাā§, āϤাāĻšāϞে āĻĒ্āϰā§োāĻāĻāϰ্āϤা āϝāϤāĻ āĻ্āϞাāύ্āϤ āĻšā§ে āϝাāĻ āύা āĻেāύ āĻāĻ্āώেāϤ্āϰে āĻĒāĻĻাāϰ্āĻĨāĻŦিāĻ্āĻাāύেāϰ āĻাāώাā§ āĻিāύ্āϤু āĻোāύāĻ āĻাāϰ্āϝ āĻāϰা āĻšā§ āύা।
Concept of Power: The rate at which energy is transferred by an object is called the power or the rate of work is done by an object is called the power.
We may noticed that an old people find it difficult to climb a flight of stairs quyickly. But they can easily climb the same flight of stair slowly. In both cases they spend the same amount of their stored energy and do the same amount of work in climbing the stairs. But thr rate at which energy is spent or work is done is different in the two cases.
Let us take another example. You can keep your hands immersed in lukewarm water for hours. But you cannot keep them in boiling water even for a second. Total transfer of energy from water to your hands may be the same in both the cases. However, the rate at which energy is transferred is different in the two cases. As a result, they have very different effects. So, we see that the rate at which work is done or energy is transferred is an important quantity. Hence, this quantity is given a separate name - called Power.
āĻĒāĻĻাāϰ্āĻĨāĻŦিāĻ্āĻাāύেāϰ āĻাāώাā§ āĻ্āώāĻŽāϤাāϰ āϧাāϰāĻŖা: āĻĒāĻĻাāϰ্āĻĨāĻŦিāĻ্āĻাāύেāϰ āĻাāώাā§ āĻ্āώāĻŽāϤাāϰ āϧাāϰāĻŖা āĻāĻāĻু āĻ
āύ্āϝāϰāĻāĻŽ। āϝেāĻŽāύ, āĻāĻāĻ āĻĒāϰিāĻŽাāύ āĻাāĻ āĻĻুāĻāĻāύ āĻŦ্āϝāĻ্āϤিāĻে āĻāϰāϤে āĻĻেāĻā§া āĻšāϞ। āĻāĻ্āώেāϤ্āϰে āĻĻুāĻāĻāύāĻ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰে āĻাāĻāĻিāĻে āϏāĻŽ্āĻĒাāĻĻāύ āĻāϰāϞ। āĻিāύ্āϤু āĻĻেāĻা āĻেāϞ āĻāĻāĻāύেāϰ āĻāĻ āĻাāĻāĻি āϏāĻŽ্āĻĒূāϰ্āύ āĻāϰāϤে āĻāĻŽ āϏāĻŽā§ āϞাāĻāϞো āĻ
āύ্āϝāĻāύেāϰ āĻŦেāĻļি āϏāĻŽā§ āϞাāĻāϞো। āĻāĻ্āώেāϤ্āϰে āĻŦিāĻ্āĻাāύেāϰ āĻাāώাā§ āϝে āĻāĻŽ āϏāĻŽā§ে āĻাāĻāĻিāĻে āϏāĻŽ্āĻĒাāĻĻāύ āĻāϰে āϤাāϰ āĻ্āώāĻŽāϤা āĻŦেāĻļি āĻŦāϞে āϧāϰা āĻšā§। āϝেāĻŽāύ, āĻāĻāĻি āĻāĻāĻে āĻāĻāϤāϞা āĻĨেāĻে āϤিāύāϤāϞাā§ āϤুāϞāϤে āĻāĻāĻāύেāϰ 3 āĻŽিāύিāĻ āϏāĻŽā§ āϞাāĻāϞো āĻāĻŦং āĻāϰ āĻāĻāĻāύেāϰ 5 āĻŽিāύিāĻ āϏāĻŽā§ āϞাāĻāϞো। āϝাāϰ āϏāĻŽā§ āĻāĻŽ āϞাāĻāϞো āĻāĻ্āώেāϤ্āϰে āϤাāϰ āĻ্āώāĻŽāϤা āĻŦেāĻļি। āĻ
āϰ্āĻĨাā§ āĻাāϰ্āϝ āĻāϰাāϰ āĻšাāϰāĻে āĻ্āώāĻŽāϤা āĻŦāϞে। āĻŦা āĻāĻāĻ āϏāĻŽā§ে āĻোāύāĻ āĻŦ্āϝāĻ্āϤি āĻŦা āĻোāύāĻ āϝāύ্āϤ্āϰ āϝে āĻĒāϰিāĻŽাāύ āĻাāϰ্āϝ āϏāĻŽ্āĻĒাāĻĻāύ āĻāϰে āϤাāĻে āĻŦিāĻ্āĻাāύেāϰ āĻাāώাā§ āĻ্āώāĻŽāϤা āĻŦāϞে।
Concept of Energy: Energy is defined as the capacity to do work and it is measured by the total quantity of work it can do. When a car runs, the engine of the car generates a force which displaces the car. In other words, work is done by the car. This work is done on the expense of fuel. Fuel provides the energy needed to run the car. So, if there is no source of energy, no work will be done.
āĻĒāĻĻাāϰ্āĻĨāĻŦিāĻ্āĻাāύেāϰ āĻাāώাā§ āĻļāĻ্āϤিāϰ āϧাāϰāĻŖা: āĻোāύāĻ āĻŦ্āϝāĻ্āϤি āĻŦা āĻোāύāĻ āϝāύ্āϤ্āϰ āĻী āĻĒāϰিāĻŽাāύ āĻাāϰ্āϝ āĻāϰāϤে āĻĒাāϰে āϤা āύিāϰ্āĻāϰ āĻāϰে āϤাāϰ āĻŽāϧ্āϝে āĻĨাāĻা āĻļāĻ্āϤিāϰ āĻāĻĒāϰ। āĻ
āϰ্āĻĨাā§ āĻাāϰ্āϝ āĻāϰাāϰ āϝে āϏাāĻŽāϰ্āĻĨ্āϝ āϤাāĻ āĻšāϞ āĻļāĻ্āϤি। āϝাāϰ āĻŽāϧ্āϝে āĻļāĻ্āϤি āĻāĻে āϏেāĻ āĻাāϰ্āϝ āϏāĻŽ্āĻĒাāĻĻāύ āĻāϰāϤে āĻĒাāϰে। āϤাāĻ āĻাāϰ্āϝ āĻ āĻļāĻ্āϤি āϏāĻŽাāϰ্āĻĨāĻ āĻāĻŦং āĻāϰা āĻāĻāĻ āĻৌāϤāϰাāĻļি।
WORK
Work is always done by a force. We often name the agent that has applied the force and we say that the agent has done the work. For example, when an apple falls from o tree, the force of attraction of the earth does work on the apple. Here we say that the earth has done work on the apple. In fact, work is done by the force of attraction that the earth has exerted on the apple.
Therefore, the condition to the work to be done are
(1) A force must act on the body and
(2) The body must be displaced from one position to another position.
Example:
(1) Work is done, when we hit a football. In this case, when we hit the football, force is applied on the football and the football travels a certain distance before landing the on the ground.
(2) Work is done when we lift a box through a height. In this case the applied force does work in lifting the box.
FACTORS ON WHICH WORK DONE DEPENDS:
Work done by a force depends upon the following factors
(1) The magnitude of the applied force. If a small force is applied on a body, less amount of work is done and vice-versa. Thus \(W \propto F\), where F is the magnitude of force applied.
(2) The distance travelled by the body in the direction of applied force. If a body travels large distance on the application of force, large amount of work is done and vice-versa. Thus \(W \propto s\), where s is the magnitude of displacement.
āĻĒāĻĻাāϰ্āĻĨāĻŦিāĻ্āĻাāύেāϰ āĻাāώাā§ āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦাāĻš্āϝিāĻ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰে āϏāĻŽ্āĻĒাāĻĻিāϤ āĻাāϰ্āϝ āĻĻুāĻি āĻŦিāώā§েāϰ āĻāĻĒāϰ āύিāϰ্āĻāϰ āĻāϰāϤে āĻšā§।
(1) āĻŦাāĻš্āϝিāĻ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻŽাāύ। āĻāĻ āĻŦাāĻš্āϝিāĻ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻŽাāύ āϝāϤ āĻŦেāĻļি āĻšāĻŦে āϏāĻŽ্āĻĒাāĻĻিāϤ āĻাāϰ্āϝেāϰ āĻŽাāύāĻ āϤāϤ āĻŦেāĻļি āĻšāĻŦে। āĻ āϰ্āĻĨাā§ āϞেāĻা āϝাā§ \(W \propto F\)
(2) āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻĒ্āϰā§োāĻāĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ (Displacement)। āĻŦাāĻš্āϝিāĻ āĻŦāϞেāϰ āĻ্āϰিā§াā§ āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻ āϏāϰāĻŖেāϰ āĻŽাāύāĻ āϝāϤ āĻŦেāĻļি āĻšāĻŦে, āϏāĻŽ্āĻĒাāĻĻিāϤ āĻাāϰ্āϝāĻ āϤāϤ āĻŦেāĻļি āĻšāĻŦে। āĻ āϰ্āĻĨাā§ \(W \propto d\)
DEFINITION OF WORK:
The work done by a force acting on an object is equal to the product of the force and the displacement of the object in the direction of the force.
or,
Work is said to be done by a force on a body if the force applied causes a displacement in the body or object.
āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰā§োāĻāĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ āĻāĻে, āϤাāĻšāϞে āĻāĻ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞ āĻাāϰ্āϝ āĻāϰেāĻে āĻŦāϞে āϧāϰা āĻšā§।
MEASUREMENT OF WORK:
The amount of work done by a force on a body is obtained by multiplying the magnitude of force and the displacement.
So, \(Work = Force \times displacement\)
or, \(W = F.d\)
āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻŽাāύ āĻ āϏāϰāĻŖেāϰ āĻুāύāĻĢāϞ āĻĻ্āĻŦাāϰা āĻāĻ āĻৃāϤāĻাāϰ্āϝ āĻĒāϰিāĻŽাāĻĒ āĻāϰা āĻšā§। āĻ āϰ্āĻĨাā§ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞ P āĻāĻŦং āϏāϰāĻŖেāϰ āĻŽাāύ d āĻšāϞে āĻৃāϤāĻাāϰ্āϝ = āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞ \( \times \) āϏāϰāĻŖ
āĻŦা, \(W = F.d\)
UNIT & DEFINITION OF WORK DONE:
CGS Unit of Work Done:
We know work done = force \( \times \) displacement in the direction of force
or, W = F \( \times \) d
In CGS system, unit of force and displacement are 'dyne' and 'cm'
So, In CGS system, unit of work done is: dyne \( \times \) cm, its called as 'erg'
Therefore 1 erg = 1 dyne \( \times \) 1 cm
Definition of 'erg': When a force of 1 dyne moves a body through a distance of 1 cm in its own direction, then the work done is known as 1 erg.
SI Unit of work done:
We know work done = force \( \times \) displacement in the direction of force
or, W = F \( \times \) d
In SI system, unit of force and displacement are 'newton' and 'metre'
So, In SI system, unit of work done is: Newton \( \times \) metre, its called as Joule
Therefore 1 Joule = i Newton \( \times \) 1 metre
Definition of Joule: When a force of 1 Newton moves a body through a distance of 1 metre in its own direction, then the work done is known as 1 Joule.
Relation Between Joule & erg:
1 Joule = 1 N \( \times \) 1 m
or, 1 Joule = \({10^5}\) dyne \( \times \) 100 cm
or, 1 Joule = \({10^7}\) dyne-cm
or, 1 Joule = \({10^7}\) erg
āĻৃāϤāĻাāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻে āĻĒাāĻ,
\(W = Fd\cos \theta \)
āĻāĻāύ \(\theta = 0^\circ \) āĻšāϞে āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞ āĻ āϏāϰāĻŖেāϰ āĻ āĻিāĻŽুāĻ āĻāĻāĻ āĻĻিāĻে āĻšā§। āϏেāĻ্āώেāϤ্āϰে \(W = Fd\), āĻ āϰ্āĻĨাā§
āĻৃāϤāĻাāϰ্āϝ = āĻŦāϞ \( \times \) āĻŦāϞেāϰ āĻĒ্āϰā§োāĻāĻŦিāύ্āĻĻুāϰ āĻ āĻিāĻŽুāĻে āϏāϰāĻŖ
āĻāĻāύ CGS āĻĒāĻĻ্āϧāϤিāϤে āĻŦāϞ āĻ āϏāϰāĻŖেāϰ āĻāĻāĻ āϝāĻĨাāĻ্āϰāĻŽে 'āĻĄাāĻāύ' āĻāĻŦং 'āϏেāύ্āĻিāĻŽিāĻাāϰ'
āϤাāĻ CGS āĻĒāĻĻ্āϧāϤিāϤে āĻৃāϤāĻাāϰ্āϝেāϰ āĻāĻāĻ: āĻĄাāĻāύ \( \times \) āϏেāĻŽি, āĻāĻে āĻāϰ্āĻ āĻŦāϞে।
āĻŦা, 1 āĻāϰ্āĻ = 1 āĻĄাāĻāύ \( \times \) 1 āϏেāĻŽি
āĻāϰ্āĻেāϰ āϏংāĻ্āĻা: āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ 1 āĻĄাāĻāύ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰā§োāĻāĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ 1 āϏেāĻŽি āĻšā§, āϤāĻāύ āĻāĻ āĻĒāϰিāĻŽাāύ āĻৃāϤāĻাāϰ্āϝāĻে 1 āĻāϰ্āĻ āĻাāϰ্āϝ āĻŦāϞে।
āĻāĻŦাāϰ SI āĻĒāĻĻ্āϧāϤিāϤে 'āĻŦāϞ' āĻ 'āϏāϰāĻŖেāϰ' āĻāĻāĻ āĻšāϞ 'āύিāĻāĻāύ' āĻāĻŦং 'āĻŽিāĻাāϰ'
āϤাāĻ SI āĻĒāĻĻ্āϧāϤিāϤে āĻৃāϤāĻাāϰ্āϝেāϰ āĻāĻāĻ: āύিāĻāĻāύ \( \times \) āĻŽিāĻাāϰ, āĻāĻে āĻুāϞ āĻŦāϞে।
āĻŦা, 1 āĻুুুুāϞ = 1 āύিāĻāĻāύ \( \times \) 1 āĻŽিāĻাāϰ
āĻুāϞেāϰ āϏংāĻ্āĻা: āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ 1 āύিāĻāĻāύ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰā§োāĻāĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ 1 āĻŽিāĻাāϰ āĻšā§, āϤāĻāύ āĻāĻ āĻĒāϰিāĻŽাāύ āĻৃāϤāĻাāϰ্āϝāĻে 1 āĻুāϞ āĻাāϰ্āϝ āĻŦāϞে।
āĻুāϞ āĻ āĻāϰ্āĻেāϰ āĻŽāϧ্āϝে āϏāĻŽ্āĻĒāϰ্āĻ:
1 āĻুāϞ = 1 āύিāĻāĻāύ \( \times \) 1 āĻŽিāĻাāϰ
āĻŦা, 1 āĻুāϞ = \({10^5}\) āĻĄাāĻāύ \( \times \) 100 āϏেāĻŽি
āĻŦা, 1 āĻুāϞ = \({10^7}\) āĻĄাāĻāύ-āϏেāĻŽি
āĻŦা, 1 āĻুāϞ = \({10^7}\) āĻāϰ্āĻ
CALCULATION OF WORK DONE BY A CONSTANT FORCE:
The direction of displacement of an object can have different relation with the direction of the force acting on it. Their direction may be the same, opposite, perpendicular to each other, at an angle etc. Let us see how work is calculated in these different situations.
āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ্āϤ āĻšāĻā§াāϰ āĻĒāϰ āϤাāϰ āϏāϰāĻŖেāϰ āĻ āĻিāĻŽুāĻ āĻ āύুāϝাā§ী āĻাāϰ্āϝ āĻŦিāĻিāύ্āύ āϧāϰāĻŖেāϰ āĻšāϤে āĻĒাāϰে। āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ্āϰিā§াā§, āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ āĻāĻāϤে āĻĒাāϰে (1) āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāĻ (2) āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāϰ āĻŦিāĻĒāϰীāϤে (3) āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāϰ āϏাāĻĨে āϞāĻŽ্āĻŦāĻাāĻŦে। āĻāĻ āϤিāύāĻ্āώেāϤ্āϰেāĻ āĻাāϰ্āϝেāϰ āϧāϰāĻŖ āϤিāύāϰāĻāĻŽ āĻšā§।
(1) When a force is applied at an angle with the horizontal direction (Displacement at an angle to the force):
Let a force F be applied on a wooden block at an angle \(\theta \) with the horizontal direction as shown in figure.Here the component of force F in the horizontal direction = \(F\cos \theta \)
and the component of F in the vertical direction = \(F\sin \theta \)
Let the block moves horizontally and occupies a new position B so that it travels a distance s horizontally. Since, \(F\sin \theta \) does not produce displacement in the block in the upward direction, so the only force which displace the block is \(F\cos \theta \). According to the definition of work done,
\(W = Force(applied) \times dis\tan ce(travelled)\)
or, \(W = F\cos \theta \times d\)
or, \(W = Fd\cos \theta \)
or, \(W = F.d\)
Here \(F.d\) is read as dot product of F and d.
Thus, work done on a body by a force is defined as the product of the magnitude of the displacement and the force in the direction of the displacement.
āϧāϰাāϝাāĻ āĻāĻāĻি āĻাāĻ েāϰ āĻŦāϞেāϰ āĻāĻĒāϰ F āĻŽাāύেāϰ āĻŦāϞ āĻ āύুāĻূāĻŽিāĻেāϰ āϏাāĻĨে \(\theta \) āĻোāĻŖে āĻ্āϰিā§া āĻāϰāĻে। āĻāĻ্āώেāϤ্āϰে āĻāĻ F āĻŦāϞāĻিāϰ āĻ āύুāĻূāĻŽিāĻ āĻŦāϰাāĻŦāϰ āĻāĻĒাংāĻļ \(F\cos \theta \) āĻāĻŦং āĻāϞ্āϞāĻŽ্āĻŦ āĻŦāϰাāĻŦāϰ āĻāĻĒাংāĻļ \(F\sin \theta \)। āĻাāĻ েāϰ āĻŦ্āϞāĻāĻিāϰ āĻāĻĒāϰ āĻāύāϤāĻাāĻŦে āĻāĻ F āĻŦāϞেāϰ āĻ্āϰিā§াā§, āĻŦ্āϞāĻāĻিāϰ āϏāϰāĻŖ āĻ āύুāĻূāĻŽিāĻ āĻĻিāĻে āĻšā§ d। āϤাāĻ āĻāĻ্āώেāϤ্āϰে āĻৃāϤāĻাāϰ্āϝ āĻšā§
āĻৃāϤāĻাāϰ্āϝ = āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞ \( \times \) āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻে āϏāϰāĻŖ
āĻŦা, \(W = F\cos \theta \times d\)
āĻŦা, \(W = Fd\cos \theta \)
āĻŦা, \(W = F.d\)
āĻāĻাāύে āĻāĻ \(F.d\) āĻে āĻŦāϞ āĻ āϏāϰāĻŖেāϰ āĻĄāĻ āĻুāύāĻĢāϞ āĻŦāϞে। āĻāĻ āĻĄāĻ āĻুāύāĻĢāϞ āϏāĻŽ্āĻĒāϰ্āĻে āĻāĻŽāϰা āĻāĻ্āĻāϤāϰ āĻļ্āϰেāĻŖিāϤে āĻাāύāĻŦো।
(2) When a constant force is applied in the horizontal direction:
Here two case arrived.
(i) Displacement is in the direction of the force i.e, displacement is along the force, this is also called Positive Work Done
āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ্āϤ āĻšāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰā§োāĻāĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāĻ āĻšā§, āϤāĻāύ āĻŦāϞা āĻšā§ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞ āĻĻ্āĻŦাāϰা āĻাāϰ্āϝ āĻāϰা āĻšā§েāĻে। āĻāĻে āϧāύাāϤ্āĻŦāĻ āĻাāϰ্āϝ āĻŦāϞে।
(ii) Displacement is in the direction opposite to the force i.e, displacement is opposite the force, this is also called Negative Work Done.
āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ্āϤ āĻšāϞে āϝāĻĻি āĻŦāϞেāϰ āĻĒ্āϰā§োāĻāĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāϰ āĻŦিāĻĒāϰীāϤ āĻĻিāĻে āĻšā§, āϤāĻāύ āĻŦāϞা āĻšā§ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻাāϰ্āϝ āĻāϰা āĻšā§েāĻে। āĻāĻে āĻāύাāϤ্āĻŦāĻ āĻাāϰ্āϝ āĻŦāϞা āĻšā§।
Let a constant force F be applied on a wooden block placed at position A on the smooth surface as shown in figure. Suppose the block moves in the direction of applied force to the new position B so that its displacement is s. Then, work done by the force is given by
\(W = F.d\)
Thus, work done on the block (or any other object) by a constant force is equal to the product of the magnitude of the applied force and the distance travelled by the body.
āϧāϰাāϝাāĻ, F āĻŽাāύেāϰ āĻāĻāĻি āĻŦāϞেāϰ āĻ্āϰিā§াā§ āĻāĻāĻি āĻাāĻ েāϰ āĻŦ্āϞāĻ A āĻŦিāύ্āĻĻু āĻĨেāĻে B āĻŦিāύ্āĻĻুāϤে āϏāϰে āϝাā§। āĻāϤে āĻŦ্āϞāĻāĻিāϰ āϏāϰāĻŖেāϰ āĻŽাāύ d āĻšāϞে āĻৃāϤāĻাāϰ্āϝ āĻšā§
\(W = F.d\)
(i) Positive Work Done: If the displacement of an object is in the direction of the force applied on it, the amount of the work done by the force on this object is obtained by multiplying the force and the displacement. Here the force is acting in the direction of displacement then, the work done is positive. In this case \(\theta = 0^\circ \) i.e., the force F acts in the direction of displacements of the body.
\(work - done = force \times displacement\)If we denote work, force and displacement by W, F and d respectively then
\(W = Fd\cos \theta \)
or, \(W = Fd\cos 0^\circ \)
or, \(W = F.d\) [\(\cos 0^\circ = 1\)]
āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ্āϤ āĻšāϞে āϝāĻĻি āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ্āϰিā§াā§ āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻে āĻāĻে āϤāĻāύ āĻŦāϞা āĻšā§ āĻŦāϞ āĻĻ্āĻŦাāϰা āĻাāϰ্āϝ āĻāϰা āĻšā§েāĻে āĻāĻŦং āĻāĻ āĻাāϰ্āϝāĻে āϧāύাāϤ্āĻŦāĻ āĻাāϰ্āϝ āĻŦāϞে।
āĻৃāϤāĻাāϰ্āϝেāϰ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻে āĻāĻŽāϰা āĻĒাāĻ,
\(W = Fd\cos \theta \)
āĻŦা, \(W = Fd\) [āĻāĻ্āώেāϤ্āϰে \(\theta = 0^\circ \) āĻāĻŦং \(\cos 0^\circ = 1\)]
āĻ āϰ্āĻĨাā§ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ্āϰিā§াā§ āĻŦāϏ্āϤুāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāĻ āĻāĻāϞে āĻৃāϤāĻাāϰ্āϝ āĻļুāϧুāĻŽাāϤ্āϰ āĻāĻ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻŽাāύ āĻ āϏāϰāĻŖেāϰ āĻুāύāĻĢāϞ āĻĻ্āĻŦাāϰাāĻ āύিāϰ্āĻŖā§ āĻāϰা āϝাā§। āĻāĻ āĻĒ্āϰāĻাāϰ āĻৃāϤāĻাāϰ্āϝ āĻšāϞ āϧāύাāϤ্āĻŦāĻ।
Example:
(a) In a tug of war, the work done by a wining team is positive. The winning team applies a force on the rope in the backward direction and the rope is also displaced in the direction of applied force.
(b) When an object falls from a height, its displacement is in the direction downward under the force of gravity.
āϝāĻāύ āĻāĻāĻি āĻŦāϏ্āϤু āĻāĻĒāϰ āĻĨেāĻে āύীāĻেāϰ āĻĻিāĻে āĻĒā§ে āϤāĻāύ āĻ āĻিāĻāϰ্āώ āĻŦāϞ āύীāĻেāϰ āĻĻিāĻে āĻ্āϰিā§া āĻāϰে, āĻāĻ্āώেāϤ্āϰে āĻŦāϞāĻিāϰāĻ āϏāϰāĻŖ āύীāĻেāϰ āĻĻিāĻে āĻšā§। āϤাāĻ āĻāĻ্āώেāϤ্āϰে āĻāĻ āĻ āĻিāĻāϰ্āώ āĻŦāϞ, āĻŦāϞেāϰ āĻĒāĻ্āώে āĻাāϰ্āϝ āĻāϰে āĻāĻŦং āĻāĻ āĻাāϰ্āϝ āϧāύাāϤ্āĻŦāĻ āĻšā§।
(c) If you push a book along a table, the displacement of the book is along the direction of the force you exert.
āĻেāĻŦিāϞে āϰাāĻা āĻāĻāĻি āĻŦāĻā§েāϰ āĻāĻĒāϰ āĻŦāϞāĻĒ্āϰā§োāĻ āĻāϰে āĻŦāĻāĻিāĻে āϏāϰাāϞে, āĻāĻ্āώেāϤ্āϰেāĻ āĻŦāĻāĻিāϰ āϏāϰāĻŖ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻে āĻāĻে। āϤাāĻ āĻāĻিāĻ āĻŦāϞেāϰ āĻĒāĻ্āώে āĻাāϰ্āϝ āĻāϰা āĻšā§ āĻāĻŦং āĻāĻি āϧāύাāϤ্āĻŦāĻ āĻাāϰ্āϝ।
(d) When we kick a football lying on the ground, then the football starts moving. The force of our kick has moved the football. Here we have applied the force in the direction of motion of football. So, the work done on the football in this case is positive. (ii) Negative Work Done: If the displacement of an object is in the opposite direction of the force
applied on it, the amount of the work done by the force on this object is obtained by multiplying the force and the displacement. Here the force is acting in the opposite direction of displacement then, the work done is negative. In this case \(\theta = 180^\circ \) i.e., the force F acts in the opposite direction of displacements of the body.
\(work - done = force \times displacement\)If we denote work, force and displacement by W, F and d respectively then
\(W = Fd\cos \theta \)
or, \(W = Fd\cos 180^\circ \)
or,\(W = - Fd\) [\(\cos 180^\circ = - 1\)]
āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ্āϤ āĻšāϞে āϝāĻĻি āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ্āϰিā§াā§ āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāϰ āĻŦিāĻĒāϰীāϤে āĻšā§, āϤāĻāύ āĻŦāϞা āĻšā§ āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻাāϰ্āϝ āĻāϰা āĻšā§েāĻে। āĻāĻŦং āĻāĻ āĻাāϰ্āϝāĻে āĻāύাāϤ্āĻŦāĻ āĻাāϰ্āϝ āĻŦāϞে।
āĻৃāϤāĻাāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻে āĻĒাāĻ,
\(W = Fd\cos \theta \)
āĻŦা, \(W = Fd\cos 180^\circ \)
āĻŦা, \(W = - Fd\) [āĻāĻ্āώেāϤ্āϰে \(\theta = 180^\circ \) āĻāĻŦং \(\theta = 180^\circ \)]
āĻ āϰ্āĻĨাā§ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ্āϰিā§াā§ āĻোāύāĻ āĻŦāϏ্āϤুāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāϰ āĻŦিāĻĒāϰীāϤে āĻāĻāϞে āϏেāĻ āĻĒ্āϰāĻাāϰ āĻাāϰ্āϝ āĻāύাāϤ্āĻŦāĻ āĻšā§। āĻāĻে āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻাāϰ্āϝ āĻŦāϞে।
Example:
(a) In a tug of war, the work done by the losing team is negative. The losing team applies a force on the rope in the backward direction but the rope is displaced in the forward direction.
(b) When a ball is thrown up, its displacement is in the upward direction, whereas the force due to the earth's gravity is in the downward direction.
āĻāĻāĻি āĻŦāϏ্āϤুāĻে āĻāĻĒāϰেāϰ āĻĻিāĻে āĻোঁā§া āĻšāϞে āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ āĻāĻĒāϰেāϰ āĻĻিāĻে āĻšā§। āĻিāύ্āϤু āĻ āĻিāĻāϰ্āώ āĻŦāϞ āϏāϰ্āĻŦāĻĻা āύিāĻŽ্āύ āĻ āĻিāĻŽুāĻে āĻ্āϰিā§া āĻāϰে। āϤাāĻ āĻāĻ্āώেāϤ্āϰে āĻ āĻিāĻāϰ্āώ āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻাāϰ্āϝ āĻāϰা āĻšā§ āĻāĻŦং āĻāĻ āĻাāϰ্āϝ āĻāύাāϤ্āĻŦāĻ।
(c) A football moving on the ground slows down gradually and ultimately stops. This is because a force due to friction (of ground) acts on the football. The force of friction acts in a direction opposite to the direction of motion of football. So, in this case the work done by the force of friction on the football is negative.
(d) āĻŽাāĻিāϰ āĻāĻĒāϰে āĻĨাāĻা āĻāĻāĻি āĻাāĻ েāϰ āĻŦ্āϞāĻāĻে āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰে āϏāϰাāϞে āĻāϰ্āώāĻŖ āĻŦāϞ, āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻŦিāĻĒāϰীāϤ āĻ āĻিāĻŽুāĻে āĻ্āϰিā§া āĻāϰে। āĻāĻŦং āĻŦ্āϞāĻāĻিāϰ āϏāϰāĻŖ āĻিāύ্āϤু āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻে āĻšā§। āϤাāĻ āĻāĻ্āώেāϤ্āϰে āĻāϰ্āώāύ āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻাāϰ্āϝ āĻāϰা āĻšā§ āĻāĻŦং āĻāĻ āĻāϰ্āώāĻŖ āĻŦāϞ āĻĻ্āĻŦাāϰা āĻৃāϤāĻাāϰ্āϝ āĻāύাāϤ্āĻŦāĻ।
(3) When a constant force is applied on a body and displacement caused perpendicular to the force applied (Displacement in the direction perpendicular to the force ), this is also called Zero Work Done:
If the displacement of an object is perpendicular to the force acting on it, the work done by the force on the object is zero. If the force is acting perpendicular to the displacement then work done is zero. In this case \(\theta \) = \(90^\circ \)
i.e, force F acts at right angles to the displacement of the body,
then \(W = Fd\cos 90^\circ \)
or, \(W = 0\) [\(\cos 90^\circ = 0\)]
Therefore no work is done by force
āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ্āϤ āĻšāϞে, āϝāĻĻি āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ āĻŦāϞ āĻĒ্āϰā§োāĻেāϰ āĻ āĻিāĻŽুāĻেāϰ āϏাāĻĨে āϞāĻŽ্āĻŦāĻাāĻŦে āĻšā§, āϤāĻāύ āĻāĻ āĻŦāϞেāϰ āĻĻ্āĻŦাāϰা āĻোāύāĻ āĻৃāϤāĻাāϰ্āϝ āĻāϰা āĻšā§ āύা। āĻāĻ্āώেāϤ্āϰে āĻŦāϞ āĻĻ্āĻŦাāϰা āĻৃāϤāĻাāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§। āĻāĻ āϧāϰāύেāϰ āĻŦāϞāĻে āĻাāϰ্āϝāĻšীāύ āĻŦāϞ āĻŦāϞে। āĻ āϰ্āĻĨাā§ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻ, āϏāϰāĻŖেāϰ āĻ āĻিāĻŽুāĻেāϰ āϏাāĻĨে āϏāĻŽāĻোāĻŖে āĻ্āϰিā§াāĻļীāϞ āĻšāϞে āĻৃāϤāĻাāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§।
āĻৃāϤāĻাāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻে āĻĒাāĻ,
āĻৃāϤāĻাāϰ্āϝ = āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞ \( \times \) āĻŦāϞেāϰ āĻĒ্āϰā§োāĻāĻŦিāύ্āĻĻুāϰ āϏāϰāĻŖ
āĻŦা, \(W = Fd\cos \theta \)
āĻŦা, \(W = Fd\cos 90^\circ \)
āĻŦা, \(W = 0\) [āĻāĻ্āώেāϤ্āϰে \(\theta = 90^\circ \) āĻāĻŦং \(\cos 90^\circ = 0\)]
āĻ āϰ্āĻĨাā§ āĻŦāϞ āĻĒ্āϰā§োāĻে āĻোāύāĻ āĻŦāϏ্āϤুāϰ āϏāϰāĻŖ āĻŦāϏ্āϤুāĻিāϰ āĻāĻĒāϰ āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāϰ āϏāĻ্āĻে āϞāĻŽ্āĻŦ āĻšāϞে āĻৃāϤāĻাāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§।
Example:
(a) Work done by the force of gravity on a box lying on the roof of a bus moving with a constant velocity on a straight road is zero. In this case, force of gravity acts vertically downward and the displacement of the box takes place horizontally.
(b) When an aeroplane flying in the sky, the force of gravity acts downward direction, whereas the aeroplane's displacement is in the horizontal direction. Here the gravity force and the displacement are perpendicular to each other.
(c) When a porter moves on a railway platform with a heavy load on his head, he exert a vertically upward force on the load. But, the displacement of the load is in the horizontal direction. The load has not moved any distance in the vertical direction, and hence the work done by the force exerts by the porter is zero. So, the porter does no work on the load when he moves on the railway platform. (Why do people pay him?)
(d) To keep a body moving in a circle, there must be a force acting on it directed towards the center. This force is called centripetal force. Now when a body moves in a circular path, then the centripetal force acts along the radius of the circle, and it is at right angles to the motion of the body. Thus the work done on a body moving in a circular path is zero. Thus the work done in the case of earth moving round the sun is zero.
(e) The satellite (like the moon) move around the earth in a circular path. In this case the gravitational force of earth acts on the satellite at right angles to the direction of motion of satellite. So, the work done by the earth on the satellite moving around it in circular path is zero.
(f) Similarly the work done by the sun on planets (like the earth) moving around it in circular orbit is zero.
āĻĒৃāĻĨিāĻŦী, āϏূāϰ্āϝেāϰ āĻাāϰিāĻĻিāĻে āĻŦৃāϤ্āϤাāĻাāϰ āĻāĻ্āώāĻĒāĻĨে āĻāĻŦāϰ্āϤāύ āĻāϰে। āĻāĻাāύে āϏূāϰ্āϝ āĻ āĻĒৃāĻĨিāĻŦীāϰ āĻŽāϧ্āϝে āϏāϰ্āĻŦāĻĻা āĻŽāĻšাāĻāϰ্āώ āĻŦāϞ āĻ্āϰিā§া āĻāϰে āĻāĻŦং āĻĒৃāĻĨিāĻŦীāϰ āϏāϰāĻŖ āĻāĻ্āώāĻĒāĻĨেāϰ āϏ্āĻĒāϰ্āĻļāĻ āĻŦāϰাāĻŦāϰ āĻ āϰ্āĻĨাā§ āĻāĻ āĻŽāĻšাāĻāϰ্āώ āĻŦāϞেāϰ āϏাāĻĨে āϞāĻŽ্āĻŦāĻাāĻŦে āĻ্āϰিā§া āĻāϰে। āϤাāĻ āĻāĻাāύেāĻ āĻĒৃāĻĨিāĻŦী āĻোāύāĻ āĻাāĻ āĻāϰে āύা āĻāĻŦং āĻŽāĻšাāĻāϰ্āώ āĻŦāϞ āĻāĻাāύে āĻāĻāĻি āĻাāϰ্āϝāĻšীāύ āĻŦāϞ।
(g) āĻāĻāĻি āĻŦāϏ্āϤুāĻে āĻ āύুāĻূāĻŽিāĻ āĻĻিāĻে āĻেāύে āύিā§ে āĻেāϞে āĻŦāϏ্āϤুāĻিāϰ āĻāĻāύ āύিāĻŽ্āύ āĻ āĻিāĻŽুāĻে āĻ্āϰিā§া āĻāϰে, āĻিāύ্āϤু āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ āĻāĻ āĻ্āϰিā§াāĻļীāϞ āύিāĻŽ্āύ āĻ āĻিāĻŽুāĻী āĻāĻāύেāϰ āϏাāĻĨে āĻ āύুāĻূāĻŽিāĻ āĻŦāϰাāĻŦāϰ āϞāĻŽ্āĻŦāĻাāĻŦে āĻāϤিāĻļীāϞ āĻšā§। āϤাāĻ āĻāĻাāύে āĻৃāϤāĻাāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻāĻŦং āĻāĻ্āώেāϤ্āϰে āĻāĻ āĻāĻāύ āĻāĻāĻি āĻাāϰ্āϝāĻšীāύ āĻŦāϞ।
(h) āϧāϰাāϝাāĻ āĻāĻ āĻŦ্āϝāĻ্āϤি āĻāĻāĻি āϏুāĻāĻেāĻļ āĻšাāϤে āύিā§ে āĻ āύুāĻূāĻŽিāĻ āĻĒāĻĨে āĻšেঁāĻে āϝাāĻ্āĻে। āĻāĻাāύে āϏুāĻāĻেāĻļāĻিāϰ āĻāĻāύ āĻāϞ্āϞāĻŽ্āĻŦāĻাāĻŦে āύিāĻŽ্āύ āĻ āĻিāĻŽুāĻে āĻ্āϰিā§াāĻļীāϞ। āĻিāύ্āϤু āϏুāĻāĻেāĻļāĻিāϰ āϏāϰāĻŖ āϤāĻĨা āĻŦ্āϝāĻ্āϤিāϰ āϏāϰāĻŖ āĻ āύুāĻূāĻŽিāĻ āĻŦāϰাāĻŦāϰ āĻ āϰ্āĻĨাā§ āĻāĻāύেāϰ āϏāĻŽāĻোāĻŖে āĻ্āϰিā§াāĻļীāϞ। āϤাāĻ āĻāĻ্āώেāϤ্āϰে āĻোāύāĻ āĻাāϰ্āϝ āĻāϰা āĻšā§ āύা āĻāĻŦং āĻāĻ āĻ āĻিāĻāϰ্āώāĻāύিāϤ āĻāĻāύ āĻāĻাāύে āĻাāϰ্āϝāĻšীāύ āĻŦāϞ।
āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ্āϤ āĻšāϞেāĻ āĻোāύ্ āĻোāύ্ āĻ্āώেāϤ্āϰে āĻাāϰ্āϝ āĻāϰা āĻšā§ āύা?
āĻāĻŽāϰা āĻৃāϤāĻাāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻে āĻĒাāĻ,
\(W = Fd\cos \theta \) ... ... ... ... (i)
(1) āĻāĻāύ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰা āϏāϤ্āϤ্āĻŦেāĻ āϏāϰāĻŖেāϰ āĻŽাāύ āĻ āϰ্āĻĨাā§ āϝāĻĻি d āĻāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§, āϏেāĻ্āώেāϤ্āϰে āĻৃāϤāĻাāϰ্āϝ W = 0।
āϝেāĻŽāύ: (a) āĻ āύেāĻ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰে āĻāĻāĻি āĻŦā§ো āĻĒাāĻĨāϰāĻāύ্āĻĄāĻে āϏāϰাāύোāϰ āĻেāώ্āĻা āĻāϰা āĻšāϞ। āĻিāύ্āϤু āϏেāĻি āĻāĻāĻুāĻুāĻ āϏāϰāϞ āύা। āĻāĻ্āώেāϤ্āϰে āϏāϰāĻŖ d āĻāϰ āĻŽাāύ āĻļূāύ্āϝ, āϤাāĻ āĻৃāϤāĻাāϰ্āϝ āĻļূāύ্āϝ āĻšā§।
(b) āĻāĻŦাāϰ āϝāĻāύ āĻোāύāĻ āĻŦ্āϝāĻ্āϤি āύāĻĻীāϰ āϏ্āϰোāϤেāϰ āĻŦিāĻĒāĻ্āώে āϏাঁāϤাāϰ āĻাāĻাāϰ āĻেāώ্āĻা āĻāϰেāĻ āĻāĻāĻুāĻুāĻ āĻāĻিā§ে āϝেāϤে āĻĒাāϰে āύা, āϏেāĻ্āώেāϤ্āϰেāĻ āϏāϰāĻŖ d āĻāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§। āϤাāĻ āĻāĻাāύেāĻ āĻৃāϤāĻাāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§।
(c) āĻĻā§ি āĻাāύাāĻাāύি āĻেāϞাā§ āĻāĻā§āĻĒāĻ্āώ āϏāĻŽাāύ āĻোāϰে āĻĻā§ি āĻাāύāϞে āĻĻā§িāϰ āĻোāύāĻ āϏāϰāĻŖ āĻšā§ āύা। āϤাāĻ āĻĻুāĻāĻĒāĻ্āώ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰāϞেāĻ āĻৃāϤāĻাāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§।
(2) āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰাāϰ āĻĒāϰ āϝāĻĻি āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāϰ āϏাāĻĨে āϏāĻŽāĻোāĻŖে āĻšā§, āϏেāĻ্āώেāϤ্āϰেāĻ āĻāĻ āĻŦāϞ āĻĻ্āĻŦাāϰা āĻৃāϤāĻাāϰ্āϝ āĻšā§ āύা। āĻাāϰāύ āĻāĻ্āώেāϤ্āϰে āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞ āĻ āϏāϰāĻŖেāϰ āĻŽāϧ্āϝāĻŦāϰ্āϤী āĻোāĻŖ āĻšā§ \(\theta = 90^\circ \)। āĻৃāϤāĻাāϰ্āϝ āĻĒāϰিāĻŽাāĻĒেāϰ āϏাāϧাāϰāĻŖ āϰাāĻļিāĻŽাāϞা āĻĨেāĻে āĻĒাāĻ,
\(W = Fd\cos \theta \)
āĻāĻ্āώেāϤ্āϰে \(\theta = 90^\circ \) āĻšāĻā§াā§ \(\cos \theta = \cos 90^\circ = 0\)
āϤাāĻ āĻৃāϤāĻাāϰ্āϝ \(W = 0\) āĻšā§।
āϝেāĻŽāύ: (a) āϝāĻāύ āĻোāύāĻ āĻŦāϏ্āϤু āĻŦৃāϤ্āϤাāĻাāϰ āĻĒāĻĨে āĻāĻŦāϰ্āϤāύ āĻāϰে āϤāĻāύ āĻŦāϏ্āϤুāĻিāϰ āĻāĻĒāϰ āĻ āĻিāĻেāύ্āĻĻ্āϰ āĻŦāϞ āĻ্āϰিā§াāĻļীāϞ āĻšā§ āĻāĻŦং āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ āĻŦৃāϤ্āϤাāĻাāϰ āĻĒāĻĨেāϰ āϏ্āĻĒāϰ্āĻļāĻ āĻŦāϰাāĻŦāϰ āĻ āϰ্āĻĨাā§ āĻ āĻিāĻেāύ্āĻĻ্āϰ āĻŦāϞেāϰ āϏাāĻĨে āϏāϰ্āĻŦāĻĻা āϞāĻŽ্āĻŦāĻাāĻŦে āĻ্āϰিā§া āĻāϰে। āĻāĻ্āώেāϤ্āϰে āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻ āĻ āϏāϰāĻŖেāϰ āĻ āĻিāĻŽুāĻ āϏāĻŽāĻোāĻŖে āĻĨাāĻাā§ āĻৃāϤāĻাāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§।
(b) āĻ āύুāĻূāĻŽিāĻ āϤāϞ āĻŦāϰাāĻŦāϰ āĻোāύāĻ āĻŦ্āϝāĻ্āϤি āĻšাāϤে āĻāĻāĻি āĻŦāϏ্āϤু āύিā§ে āĻšেঁāĻে āĻāϞāϞে, āĻŦāϏ্āϤুāĻিāϰ āĻāĻĒāϰ āϏāϰ্āĻŦāĻĻা āĻ āĻিāĻāϰ্āώ āĻŦāϞ āύিāĻŽ্āύ āĻ āĻিāĻŽুāĻে āĻ্āϰিā§াāĻļীāϞ āĻšā§ āĻāĻŦং āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ āĻ āύুāĻূāĻŽিāĻ āĻŦāϰাāĻŦāϰ āĻāĻে। āĻāĻ্āώেāϤ্āϰেāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻ্āϰিā§াāĻļীāϞ āĻ āĻিāĻāϰ্āώ āĻŦāϞ āĻ āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ āϞāĻŽ্āĻŦāĻাāĻŦে āĻšāĻā§াā§ \(\theta = 90^\circ \) āĻāĻŦং āĻৃāϤāĻাāϰ্āϝেāϰ āĻŽাāύ āĻļূāύ্āϝ āĻšā§।
āĻাāϰ্āϝāĻšীāύ āĻŦāϞ āĻাāĻে āĻŦāϞে?
What is No-Work Force?
āϝে āϏāĻŽāϏ্āϤ āĻ্āώেāϤ্āϰে āĻোāύāĻ āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ āĻŦāϞ āĻĒ্āϰāϝুāĻ্āϤ āĻšāϞে āϝāĻĻি āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ, āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāϰ āϏাāĻĨে āϏāĻŽāĻোāĻŖে āĻ্āϰিā§া āĻāϰে, āϏেāĻ্āώেāϤ্āϰে āĻāĻ āĻŦāϞāĻি āĻোāύāĻ āĻাāϰ্āϝ āϏāĻŽ্āĻĒাāĻĻāύ āĻāϰে āύা। āĻāĻ āϧāϰāĻŖেāϰ āĻŦāϞāĻে āĻাāϰ্āϝāĻšীāύ āĻŦāϞ āĻŦāϞে।
āĻৃāϤāĻাāϰ্āϝ āĻĒāϰিāĻŽাāύেāϰ āϰাāĻļিāĻŽাāϞা āĻĨেāĻে āĻĒাāĻ, \(W = Fd\cos \theta \)
āĻāĻāύ āĻŦāϞ āĻĒ্āϰā§োāĻেāϰ āĻĢāϞে, āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖেāϰ āĻ āĻিāĻŽুāĻ āϞāĻŽ্āĻŦāĻাāĻŦে āĻšāϞে \(\theta = 90^\circ \) āĻāĻŦং \(\cos \theta = \cos 90^\circ = 0\), āϤাāĻ āĻৃāϤāĻাāϰ্āϝ \(W = 0\) āĻšā§। āĻāĻ āϧāϰāύেāϰ āĻŦāϞāĻে āĻাāϰ্āϝāĻšীāύ āĻŦāϞ āĻŦāϞে।
āϝেāĻŽāύ,
āĻĒৃāĻĨিāĻŦী āϏূāϰ্āϝেāϰ āĻাāϰিāĻĻিāĻে āĻŦৃāϤ্āϤাāĻাāϰ āĻĒāĻĨে āĻāĻŦāϰ্āϤāύ āĻāϰে। āĻāĻ্āώেāϤ্āϰে āϏূāϰ্āϝ āĻ āĻĒৃāĻĨিāĻŦীāϰ āĻŽāϧ্āϝে āĻŽāĻšাāĻāϰ্āώ āĻŦāϞ āĻ্āϰিā§া āĻāϰে āĻāĻŦং āĻĒৃāĻĨিāĻŦী āĻāĻ āĻ্āϰিā§াāĻļীāϞ āĻŽāĻšাāĻāϰ্āώ āĻŦāϞেāϰ āϏাāĻĨে āϏāϰ্āĻŦāĻĻা āϏāĻŽāĻোāĻŖে āĻĨেāĻে āĻāϤিāĻļীāϞ āĻšā§। āϤাāĻ āĻāĻাāύে āĻāĻ āĻŽāĻšাāĻāϰ্āώ āĻŦāϞ āĻāĻāĻি āĻাāϰ্āϝāĻšীāύ āĻŦāϞ।
āĻ āύেāĻāϏāĻŽā§ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰাāϰ āĻĢāϞে āĻŦāϏ্āϤুāĻিāϰ āϏাāĻŽāĻ্āϰিāĻ āĻোāύāĻ āϏāϰāĻŖ āĻāĻে āύা। āϤāĻŦুāĻ āĻŦāϏ্āϤুāĻিāϰ āĻিāϤāϰāĻাāϰ āĻāĻাāϰ, āĻāĻৃāϤি, āĻā§āϤāύāĻāύিāϤ āĻĒāϰিāĻŦāϰ্āϤāύেāϰ āĻাāϰāĻŖে āĻāĻ āĻŦāϞ āĻাāĻ āĻāϰে āĻĨাāĻে:
āϝেāĻŽāύ,
(1) āĻāĻāĻি āϏ্āĻĒ্āϰিং āĻে āĻĻুāĻĻিāĻ āϧāϰে āĻাāύ āĻĻিāϞে āϏ্āĻĒ্āϰিংāĻি āϏাāĻŽāĻ্āϰিāĻāĻাāĻŦে āϏ্āĻĨাāύ āĻĒāϰিāĻŦāϰ্āϤāύ āĻāϰে āύা। āĻিāύ্āϤু āϏ্āĻĒ্āϰিং āĻিāϰ āĻāĻাāϰ, āĻā§āϤāύেāϰ āĻĒāϰিāĻŦāϰ্āϤāύ āĻāĻে। āϏ্āĻĒ্āϰিং āĻিāϰ āĻিāϤāϰে āĻোāĻো āĻোāĻো āĻ ংāĻļেāϰ āϏāϰāĻŖ āĻāĻে। āĻĢāϞে āĻāĻাāύে āĻŦāϞ āĻাāĻ āĻāϰে। āϝāĻĻিāĻ āϏ্āĻĒ্āϰিংāĻিāϰ āϏাāĻŽāĻ্āϰিāĻāĻাāĻŦে āĻোāύāĻ āϏāϰāĻŖ āĻāĻে āύা।
(2) āĻāĻāĻি āĻĒাāĻŽ্āĻĒাāϰেāϰ āϏাāĻšাāϝ্āϝে āĻāĻāĻি āĻŦেāϞুāύāĻে āĻĢোāϞাāϞে, āĻŦেāϞুāύāĻিāϰ āĻāĻাāϰ, āĻā§āϤāύ āĻĒāϰিāĻŦāϰ্āϤিāϤ āĻšā§। āĻিāύ্āϤু āĻĒাāĻŽ্āĻĒাāϰেāϰ āĻোāύāĻ āϏāϰāĻŖ āĻšā§ āύা। āĻāĻাāύে āĻĒাāĻŽ্āĻĒাāϰেāϰ āϏাāĻŽāĻ্āϰিāĻāĻাāĻŦে āϏāϰāĻŖ āύা āĻšāϞেāĻ āĻĒাāĻŽ্āĻĒাāϰ āĻিāύ্āϤু āĻাāϰ্āϝ āĻāϰে।
SAMPLE QUESTION & ANSWER
() āĻাāϰ্āϝ āĻাāĻে āĻŦāϞে? āĻāĻĻাāĻšāϰāĻŖ āĻĻাāĻ।
() CGS āĻ SI āĻĒāĻĻ্āϧāϤিāϤে āĻাāϰ্āϝেāϰ āĻĒāϰāĻŽ āĻāĻāĻāĻুāϞি āĻি āĻি?
() CGS āĻ SI āĻĒāĻĻ্āϧāϤিāϤে āĻাāϰ্āϝেāϰ āĻ āĻিāĻāϰ্āώীā§ āĻāĻāĻāĻুāϞি āĻি āĻি?
() 1 āĻāϰ্āĻ āĻাāϰ্āϝ āĻাāĻে āĻŦāϞে?
() 1 āĻুāϞ āĻাāϰ্āϝ āĻাāĻে āĻŦāϞে?
() 1 āĻ্āϰাāĻŽ-āϏেāĻŽি āĻাāϰ্āϝ āĻাāĻে āĻŦāϞে?
() 1 āĻিāϞোāĻ্āϰাāĻŽ-āĻŽিāĻাāϰ āĻাāϰ্āϝ āĻাāĻে āĻŦāϞে?
() āĻাāϰ্āϝ āĻোāύ্ āϰাāĻļি?
() āĻাāϰ্āϝেāϰ āĻŽাāϤ্āϰা āϏāĻŽীāĻāϰāĻŖāĻি āĻĒ্āϰāϤিāώ্āĻ া āĻāϰো।
() āĻুāϞ āĻ āĻāϰ্āĻেāϰ āĻŽāϧ্āϝে āϏāĻŽ্āĻĒāϰ্āĻāĻি āĻĒ্āϰāϤিāώ্āĻ া āĻāϰো।
() āĻ্āϰাāĻŽ-āϏেāĻŽি āĻ āĻāϰ্āĻেāϰ āĻŽāϧ্āϝে āϏāĻŽ্āĻĒāϰ্āĻāĻি āĻĒ্āϰāϤিāώ্āĻ া āĻāϰো।
() āĻিāĻ্āϰা-āĻŽিāĻাāϰ āĻ āĻুāϞেāϰ āĻŽāϧ্āϝে āϏāĻŽ্āĻĒāϰ্āĻāĻি āĻĒ্āϰāϤিāώ্āĻ া āĻāϰো।
() āĻŦāϞেāϰ āĻĻ্āĻŦাāϰা āĻাāϰ্āϝ āĻŦা āϧāύাāϤ্āĻŦāĻ āĻাāϰ্āϝ āĻাāĻে āĻŦāϞে? āĻāĻĻাāĻšāϰāĻŖ āĻĻাāĻ।
() āĻŦāϞেāϰ āĻŦিāϰূāĻĻ্āϧে āĻাāϰ্āϝ āĻŦা āĻāύাāϤ্āĻŦāĻ āĻাāϰ্āϝ āĻাāĻে āĻŦāϞে? āĻāĻĻাāĻšāϰāĻŖ āĻĻাāĻ।
() āĻŦāϏ্āϤুāϤে āĻŦāϞ āĻĒ্āϰāϝুāĻ্āϤ āĻšāϞেāĻ āĻী āĻী āĻ āĻŦāϏ্āĻĨাā§ āĻাāϰ্āϝ āĻāϰা āĻšā§ āύা?
() āĻাāϰ্āϝāĻšীāύ āĻŦāϞ āĻাāĻে āĻŦāϞে? āĻāĻāĻি āĻাāϰ্āϝāĻšীāύ āĻŦāϞেāϰ āĻāĻĻাāĻšāϰāĻŖ āĻĻাāĻ।
()
āĻŦোāϧāĻŽূāϞāĻ āĻĒ্āϰāĻļ্āύ:
() āĻāĻāĻি āĻŦাāϞāĻ āĻোāύāĻ āĻŦৃāϤ্āϤাāĻাāϰ āĻĒāĻĨেāϰ āĻāĻāĻি āύিāϰ্āĻĻিāώ্āĻ āĻŦিāύ্āĻĻু āĻĨেāĻে āϝাāϤ্āϰা āĻļুāϰু āĻāϰে āĻāĻ āĻĒাāĻ āĻুāϰে āĻāϏে āĻāĻŦাāϰ āϏেāĻ āĻŦিāύ্āĻĻুāϤে āĻĢিāϰে āĻāϞ। āĻāϤে āĻŦাāϞāĻāĻি āĻĻ্āĻŦাāϰা āϏāĻŽ্āĻĒাāĻĻিāϤ āĻাāϰ্āϝ āĻāϤ?
() (i) āĻĻā§ি āĻাāύাāĻাāύি āĻেāϞাā§ āĻĻূāϰ্āĻŦāϞ āĻĻāϞ āĻļāĻ্āϤিāĻļাāϞী āĻĻāϞেāϰ āĻাāĻে āĻšেāϰে āϝাā§। āĻāĻŦং (ii) āĻāĻā§āĻĒāĻ্āώāĻ āϏāĻŽাāύ āĻোāϰে āĻĻā§িāϤে āĻাāύ āĻĻেā§। āĻāĻ āĻ্āώেāϤ্āϰāĻুāϞিāϤে āĻাāϰ āĻĻ্āĻŦাāϰা āĻৃāϤāĻাāϰ্āϝ āĻāϤ āĻšāĻŦে?
() āϏূāϰ্āϝেāϰ āĻাāϰিāĻĒাāĻļে āĻĒৃāĻĨিāĻŦীāϰ āĻāĻŦāϰ্āϤāύেāϰ āĻĢāϞে āĻাāϰ্āϝ āĻšā§ āĻি āύা āĻŦ্āϝাāĻ্āϝা āĻāϰো।
() āĻāĻāĻি āĻŽোāĻāϰāĻাā§ী āϏāĻŽāĻŦেāĻে āĻāϞāĻে। āĻāĻ্āώেāϤ্āϰে āĻাā§ীāϰ āĻāĻ্āĻিāύ āĻোāύāĻ āĻাāϰ্āϝ āĻāϰāĻে āĻি?
() āĻāĻāĻŦ্āϝāĻ্āϤি āϏ্āϰোāϤেāϰ āĻŦিāĻĒāϰীāϤে āϏাঁāϤাāϰ āĻেāĻে āϤীāϰāĻূāĻŽি āϏাāĻĒেāĻ্āώে āύিāĻেāĻে āϏ্āĻĨিāϰ āϰাāĻāϤে āϏāĻ্āώāĻŽ āĻšāϞেāύ। āĻāĻ āĻŦ্āϝāĻ্āϤি āĻোāύāĻ āĻাāϰ্āϝ āĻāϰāĻে āĻি?
() āĻāĻāĻি āĻŦাāϞāĻ āĻāĻāĻি āĻāϞāĻĒূāϰ্āĻŖ āĻŦাāϞāϤি āϤুāϞāϤে āĻেāώ্āĻা āĻāϰāϞ। āĻিāύ্āϤু āĻŦাāϞāϤিāĻি āϤুāϞāϤে āĻĒাāϰāϞো āύা। āĻāĻ্āώেāϤ্āϰে āĻৃāϤāĻাāϰ্āϝেāϰ āĻŽাāύ āĻāϤ?
MATHEMATICAL PROBLEMS
() āĻāĻāĻি āĻŦāϏ্āϤুāϰ āĻāĻĒāϰ 60 āύিāĻāĻāύ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰাā§ āĻŦāϏ্āϤুāĻিāϰ āϏāϰāĻŖ āĻšā§ 15 āĻŽিāĻাāϰ। āĻৃāϤāĻাāϰ্āϝেāϰ āĻĒāϰিāĻŽাāĻŖ āĻāϤ?
() āĻāĻāĻি āĻŦāϏ্āϤুāĻে 500 āĻŽিāĻাāϰ āϏāϰাāϤে 1000 āĻুāϞ āĻাāϰ্āϝ āĻāϰāϤে āĻšā§। āĻāĻ্āώেāϤ্āϰে āĻĒ্āϰāϝুāĻ্āϤ āĻŦāϞেāϰ āĻŽাāύ āĻāϤ?
() āĻিāϤ্āϰāĻি āĻĨেāĻে āĻৃāϤāĻাāϰ্āϝেāϰ āĻĒāϰিāĻŽাāύ āύিāϰ্āĻŖā§ āĻāϰো।
() āĻোāύāĻ āĻŦāϏ্āϤুāĻে 6 āĻŽিāĻাāϰ āϏāϰাāϤে āĻŦāϏ্āϤুāĻিāϰ āĻāĻĒāϰ 3 āύিāĻāĻāύ āĻŦāϞ āĻĒ্āϰā§োāĻ āĻāϰা āĻšāϞ āĻāĻŦং āĻŦāϏ্āϤুāĻি āĻŦāϞেāϰ āĻ āĻিāĻŽুāĻেāϰ āϏাāĻĨে \(60^\circ \) āĻোāĻŖ āĻāϰে āϏāϰে āĻেāϞ। āĻৃāϤāĻাāϰ্āϝেāϰ āĻĒāϰিāĻŽাāύ āĻāϤ āĻšāĻŦে? āϏāĻŽāϏ্āϝাāĻি āĻāĻāĻি āĻিāϤ্āϰেāϰ āĻŽাāϧ্āϝāĻŽে āĻĻেāĻাāĻ।














